

Practical Discrete
Mathematics

Discover math principles that fuel algorithms for
computer science and machine learning with Python

Ryan T. White

Archana Tikayat Ray

BIRMINGHAM—MUMBAI

Practical Discrete Mathematics
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither
the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused
or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Group Product Manager: Ashwin Nair

Publishing Product Manager: Pavan Ramchandani

Senior Editor: Hayden Edwards

Content Development Editor: Aamir Ahmed

Technical Editor: Deepesh Patel

Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari

Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Vijay Kamble

First published: January 2021

Production reference: 1210121

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83898-314-7

www.packt.com

http://www.packt.com

To my parents, for their endless support, and the teachers and mentors,
formal and informal, who inspired me.

– Ryan T. White

To my parents and my sister, Abhipsha, for their unending love and
support. To Amma and Appa, for being the coolest in-laws. Finally, to my
best friend, husband, and the love of my life, Anirudh, for always having

my back and believing in me.

– Archana Tikayat Ray

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the authors
Ryan T. White, Ph.D. is a mathematician, researcher, and consultant with expertise in
machine learning and probability theory along with private-sector experience in algorithm
development and data science. Dr. White is an assistant professor of mathematics at
Florida Institute of Technology, where he leads an active academic research program
centered on stochastic analysis and related algorithms, heads private-sector projects in
machine learning, participates in numerous scientific and engineering research projects,
and teaches courses in machine learning, neural networks, probability, and statistics at the
undergraduate and graduate levels.

Archana Tikayat Ray is a Ph.D. student at Georgia Institute of Technology, Atlanta, where
her research work is focused on machine learning and Natural Language Processing
(NLP) applications. She has a master's degree from Georgia Tech as well, and a bachelor's
degree in aerospace engineering from Florida Institute of Technology.

About the reviewer
Valeriy Babushkin is the senior director of data science at X5 Retail Group, where he
leads a team of over 80 people in the fields of machine learning, data analysis, computer
vision, NLP, R&D, and A/B testing. Valeriy is a Kaggle competition grandmaster and an
attending lecturer at the National Research Institute's Higher School of Economics and
Central Bank of Kazakhstan.

Valeriy served as a technical reviewer for the books AI Crash Course and Hands-On
Reinforcement Learning with Python, Second Edition, both published by Packt.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Preface

Part I – Basic Concepts of Discrete Math

1
Key Concepts, Notation, Set Theory, Relations, and Functions

What is discrete mathematics? 4
Elementary set theory 6
Definition–Sets and set notation 6
Definition: Elements of sets 6
Definition: The empty set 7
Example: Some examples of sets 7
Definition: Subsets and supersets 7
Definition: Set-builder notation 7
Example: Using set-builder notation 8
Definition: Basic set operations 8
Definition: Disjoint sets 10
Example: Even and odd numbers 10
Theorem: De Morgan's laws 10
Example: De Morgan's Law 12

Definition: Cardinality 12
Example: Cardinality 12

Functions and relations 12
Definition: Relations, domains,
and ranges 13
Definition: Functions 13
Examples: Relations versus functions 13
Example: Functions in elementary
algebra 14
Example: Python functions versus
mathematical functions 15

Summary 16

2
Formal Logic and Constructing Mathematical Proofs

Formal Logic and Proofs by
Truth Tables 20
Basic Terminology for Formal Logic 20
Example – an invalid argument 22

Example – all penguins live in
South Africa! 23
Cores Ideas in Formal Logic 24
Truth Tables 26

Table of Contents

ii Table of Contents

Example – The Converse 27
Example – Transitivity Law of
Conditional Logic 28
Example – De Morgan's Laws 29
Example – The Contrapositive 30

Direct Mathematical Proofs 31
Example – Products of Even and Odd
Integers 31
Example – roots of even numbers 32
Shortcut – The Contrapositive 33

Proof by Contradiction 34
Example – is there a smallest positive
rational number? 35

Example – Prove √𝟐𝟐 is an Irrational
Number 36
Example – How Many Prime Numbers
Are There? 37

Proof by mathematical
induction 38
Example – Adding 1 + 2 + … + n 39
Example – Space-Filling Shapes 41
Example – exponential versus
factorial growth 42

Summary 44

3
Computing with Base-n Numbers

Understanding base-n numbers 46
Example – Decimal numbers 46
Definition – Base-n numbers 47

Converting between bases 47
Converting base-n numbers to decimal
numbers 48
Example – Decimal value of a base-6
number 48
Base-n to decimal conversion 48
Example – Decimal to base-2 (binary)
conversion 48
Example – Decimal to binary and
hexadecimal conversions in Python 50

Binary numbers and
their applications 51
Boolean algebra 52
Example – Netflix users 56

Hexadecimal numbers
and their application 59
Example – Defining locations in
computer memory 60
Example – Displaying error messages 62
Example – Media Access Control
(MAC) addresses 62
Example – Defining colors on the web 63

Summary 64

4
Combinatorics Using SciPy

The fundamental counting rule 66
Definition – the Cartesian product 66

Theorem – the cardinality of Cartesian
products of finite sets 66

Table of Contents iii

Definition – the Cartesian product
(for n sets) 67
Theorem – the fundamental
counting rule 67
Example – bytes 67
Example – colors on computers 68

Counting permutations
and combinations of objects 68
Definition – permutation 68
Example – permutations of a simple set 68
Theorem – permutations of a set 69
Example – playlists 69
Growth of factorials 69
Theorem – k-permutations of a set 70
Definition – combination 71

Example – combinations versus
permutation for a simple set 71
Theorem – combinations of a set 72
Binomial coefficients 72
Example – teambuilding 72
Example – combinations of balls 73

Applications to memory
allocation 74
Example – pre-allocating memory 74

Efficacy of brute-force
algorithms 76
Example – Caesar cipher 76
Example – the traveling salesman
problem 79

Summary 81

5
Elements of Discrete Probability

The basics of discrete
probability 84
Definition – random experiment 84
Definitions – outcomes, events, and
sample spaces 85
Example – tossing coins 85
Example – tossing multiple coins 85
Definition – probability measure 86
Theorem – elementary properties of
probability 87
Example – sports 87
Theorem – Monotonicity 88
Theorem – Principle of Inclusion-
Exclusion 89
Definition – Laplacian probability 90
Theorem – calculating Laplacian
probabilities 90
Example – tossing multiple coins 91
Definition – independent events 91

Example – tossing many coins 91

Conditional probability
and Bayes' theorem 93
Definition – conditional probability 94
Example – temperatures and
precipitation 94
Theorem – multiplication rules 95
Theorem – the Law of Total Probability 96
Theorem – Bayes' theorem 96

Bayesian spam filtering 97
Random variables, means,
and variance 98
Definition – random variable 99
Example – data transfer errors 99
Example – empirical random variable 100
Definition – expectation 100
Example – empirical random variable 101

iv Table of Contents

Definition – variance and standard
deviation 101
Theorem – practical calculation
of variance 102

Example – empirical random variable 102

Google PageRank I 102
Summary 106

Part II – Implementing Discrete
Mathematics in Data and Computer Science

6
Computational Algorithms in Linear Algebra

Understanding linear systems
of equations 110
Definition – Linear equations in two
variables 110
Definition – The Cartesian coordinate
plane 111
Example – A linear equation 112
Definition – System of two linear
equations in two variables 113
Definition – Systems of linear
equations and their solutions 118
Definition – Consistent, inconsistent,
and dependent systems 118

Matrices and matrix
representations of linear
systems 119
Definition – Matrices and vectors 119
Definition – Matrix addition and
subtraction 121
Definition – Scalar multiplication 122
Definition – Transpose of a matrix 123
Definition – Dot product of vectors 124

Definition – Matrix multiplication 124
Example – Multiplying matrices by
hand and with NumPy 125

Solving small linear systems
with Gaussian elimination 127
Definition – Leading coefficient
(pivot) 128
Definition – Reduced row
echelon form 128
Algorithm – Gaussian elimination 130
Example – 3-by-3 linear system 131

Solving large linear systems
with NumPy 133
Example – A 3-by-3 linear system
(with NumPy) 133
Example – Inconsistent and dependent
systems with NumPy 134
Example – A 10-by-10 linear system
(with NumPy) 135

Summary 137

Table of Contents v

7
Computational Requirements for Algorithms

Computational complexity of
algorithms 140
Understanding Big-O Notation 145
Complexity of algorithms
with fundamental control
structures 151
Sequential flow 152
Selection flow 153
Repetitive flow 155

Complexity of common
search algorithms 159
Linear search algorithm 160
Binary search algorithm 161

Common classes of
computational complexity 164
Summary 166
References 167

8
Storage and Feature Extraction of Graphs, Trees, and
Networks

Understanding graphs, trees,
and networks 170
Definition: graph 170
Definition: degree of a vertex 171
Definition: paths 172
Definition: cycles 172
Definition: trees or acyclic graphs 173
Definition: networks 174
Definition: directed graphs 175
Definition: directed networks 176
Definition: adjacent vertices 177
Definition: connected graphs and
connected components 177

Using graphs, trees,
and networks 178
Storage of graphs
and networks 181

Definition: adjacency list 181
Definition: adjacency matrix 182
Definition: adjacency matrix for
a directed graph 184
Efficient storage of adjacency data 186
Definition: weight matrix of a network 187
Definition: weight matrix of
a directed network 188

Feature extraction of graphs 190
Degrees of vertices in a graph 190
The number of paths between vertices
of a specified length 191
Theorem: powers of adjacency
matrices 193
Matrix powers in Python 193
Theorem: minimum-edge paths
between vi and vj 194

Summary 195

vi Table of Contents

9
Searching Data Structures and Finding Shortest Paths

Searching Graph and
Tree data structures 198
Depth-first search (DFS) 199
A Python implementation of DFS 201

The shortest path problem
and variations of the problem 205
Shortest paths on networks 205
Beyond Shortest-Distance Paths 206
Shortest Path Problem Statement 207
Checking whether Solutions Exist 208

Finding Shortest Paths
with Brute Force 212

Dijkstra's Algorithm for
Finding Shortest Paths 214
Dijkstra's algorithm 215
Applying Dijkstra's Algorithm
to a Small Problem 216

Python Implementation
of Dijkstra's Algorithm 221
Example – shortest paths 225
Example – A network that is not
connected 228

Summary 231

Part III – Real-World Applications of Discrete
Mathematics

10
Regression Analysis with NumPy and Scikit-Learn

Dataset 236
Best-fit lines and the
least-squares method 238
Variable 238
Linear relationship 238
Regression 238
The line of best fit 240
The least-squares method and
the sum of squared errors 243

Least-squares lines
with NumPy 245
Least-squares curves
with NumPy and SciPy 249
Least-squares surfaces
with NumPy and SciPy 252
Summary 255

Table of Contents vii

11
Web Searches with PageRank

The Development of Search
Engines over time 258
Google PageRank II 260

Implementing the PageRank
algorithm in Python 268
Applying the Algorithm
to Real Data 273
Summary 278

12
Principal Component Analysis with Scikit-Learn

Understanding eigenvalues,
eigenvectors, and orthogonal
bases 280
The principal component
analysis approach to
dimensionality reduction 286

The scikit-learn
implementation of PCA 290
An application to real-world
data 294
Summary 298

Other Books You May Enjoy
Index

Preface
Practical Discrete Mathematics is a comprehensive introduction for those who are new
to the mathematics of countable objects. This book will help you get up to speed with
using discrete math principles to take your computer science skills to another level.
You'll learn the language of discrete mathematics and methods crucial to studying
and describing objects and algorithms from computer science and machine learning.
Complete with real-world examples, this book covers the internal workings of memory
and CPUs, analyzes data for useful patterns, and shows you how to solve problems in
network routing, web searching, and data science.

Who this book is for
This book is for computer scientists looking to expand their knowledge of the core of their
field. University students seeking to gain expertise in computer science, mathematics,
statistics, engineering, and related disciplines will also find this book useful. Knowledge
of elementary real-number algebra and basic programming skills in any language are the
only requirements.

What this book covers
Part I – Basic Concepts of Discrete Math
Chapter 1, Key Concepts, Notation, Set Theory, Relations, and Functions, is an introduction
to the basic vocabulary, concepts, and notation of discrete mathematics.

Chapter 2, Formal Logic and Constructing Mathematical Proofs, covers formal logic and
binary and explains how to prove mathematical results.

Chapter 3, Computing with Base-n Numbers, discusses arithmetic in different numbering
systems, including hexadecimal and binary.

Chapter 4, Combinatorics Using SciPy, explains how to count the elements in certain types
of discrete structures.

x Preface

Chapter 5, Elements of Discrete Probability, covers measuring chance and the basics of
Google's PageRank algorithm.

Part II – Implementing Discrete Mathematics in
Data and Computer Science
Chapter 6, Computational Algorithms in Linear Algebra, explains how to solve algebra
problems with Python using NumPy.

Chapter 7, Computational Requirements for Algorithms, gives you the tools to determine
how long algorithms take to run and how much space they require.

Chapter 8, Storage and Feature Extraction of Graphs, Trees, and Networks, covers storing
graph structures and finding information about them with code.

Chapter 9, Searching Data Structures and Finding Shortest Paths, explains how to traverse
graphs and figure out efficient paths between vertices.

Part III – Real-World Applications of Discrete
Mathematics
Chapter 10, Regression Analysis with NumPy, is a discussion on the prediction of variables
in datasets containing multiple variables.

Chapter 11, Web Searches with PageRank, shows you how to rank the results of web
searches to find the most relevant web pages.

Chapter 12, Principal Component Analysis with Scikit-Learn, explains how to reduce the
dimensionality of high-dimensional datasets to save space and speed up machine learning.

To get the most out of this book
Knowledge of elementary real-number algebra and Python SPACE basic programming
skills are the main requirements for this book.

You will need to install Python—the latest version, if possible—to run the code in the
book. You will also need to install the Python libraries listed in the following table to run
some of the code in the book. All code examples have been tested in JupyterLab using
a Python 3.8 environment on the Windows 10 OS, but they should work with any version
of Python 3 in any OS compatible with it and with any modern integrated development
environment, or simply a command line.

Preface xi

More information about installing Python and its libraries can be found in the
following links:

• Python: https://www.python.org/downloads/

• matplotlib: https://matplotlib.org/3.3.3/users/installing.html

• NumPy: https://numpy.org/install/

• pandas: https://pandas.pydata.org/pandas-docs/stable/
getting_started/install.html

• scikit-learn: https://scikit-learn.org/stable/install.html

• SciPy: https://www.scipy.org/install.html

• seaborn: https://seaborn.pydata.org/installing.html

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Practical-Discrete-Mathematics. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838983147_ColorImages.pdf.

https://www.python.org/downloads/
https://matplotlib.org/3.3.3/users/installing.html
https://numpy.org/install/
https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html
https://scikit-learn.org/stable/install.html
https://www.scipy.org/install.html
https://seaborn.pydata.org/installing.html
https://github.com/PacktPublishing/Practical-Discrete-Mathematics
https://github.com/PacktPublishing/Practical-Discrete-Mathematics
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838983147_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838983147_ColorImages.pdf

xii Preface

Conventions used
There are a number of text conventions used throughout this book.

Keywords: indicates keywords and vocabulary.

Code in text: Indicates names of scripts, functions, packages, folder names, filenames,
file extensions, and pathnames.

A block of code is typeset as follows:
import numpy# initialize a matrix
A = numpy.array([[3, 2, 1], [9, 0, 1], [3, 4, 1]])
print(A)

The output from code is typeset as follows:
[[3 2 1]
 [9 0 1]
 [3 4 1]]

Lastly, we have important notes, which appear as follows.

Important Note
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

Preface xiii

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com

Part I – Basic
Concepts of Discrete

Math

Here you will learn the critical vocabulary, notations, and methods of discrete
mathematics, including set theory, functions and relations, logic and proofs, arithmetic,
counting, and basic probability as applied to computer science.

This part comprises the following chapters:

• Chapter 1, Key Concepts, Notation, Set Theory, Relations, and Functions

• Chapter 2, Formal Logic and Constructing Mathematical Proofs

• Chapter 3, Computing with Base-n Numbers

• Chapter 4, Combinatorics Using SciPy

• Chapter 5, Elements of Discrete Probability

1
Key Concepts,
Notation, Set

Theory, Relations,
and Functions

This chapter is a general introduction to the main ideas of discrete mathematics.
Alongside this, we will go through key terms and concepts in the field. After that,
we will cover set theory, the essential notation and notions for referring to collections of
mathematical objects and combining or selecting them. We will also think about mapping
mathematical objects to one another with functions and relations and visualizing them
with graphs.

In this chapter, we will cover the following topics:

• What is discrete mathematics?

• Elementary set theory

• Functions and relations

4 Key Concepts, Notation, Set Theory, Relations, and Functions

By the end of the chapter, you should be able to speak in the language of discrete
mathematics and understand notation common to the entire field.

Important Note
Please navigate to the graphic bundle link to refer to the color images for
this chapter.

What is discrete mathematics?
Discrete mathematics is the study of countable, distinct, or separate mathematical
structures. A good example is a pixel. From phones to computer monitors to televisions,
modern screens are made up of millions of tiny dots called pixels lined up in grids. Each
pixel lights up with a specified color on command from a device, but only a finite number
of colors can be displayed in each pixel.

The millions of colored dots taken together form intricate patterns and give our eyes the
impression of shapes with smooth curves, as in the boundary of the following circle:

Figure 1.1 – The boundary of a circle

But if you zoom in and look closely enough, the true "curves" are revealed to be jagged
boundaries between differently colored regions of pixels, possibly with some intermediate
colors, as shown in the following diagram:

Figure 1.2 – A zoomed-in view of the circle

What is discrete mathematics? 5

Some other examples of objects studied in discrete mathematics are logical statements,
integers, bits and bytes, graphs, trees, and networks. Like pixels, these too can form
intricate patterns that we will try to discover and exploit for various purposes related
to computer and data science throughout the course of the book.

In contrast, many areas of mathematics that may be more familiar, such as elementary
algebra or calculus, focus on continuums. These are mathematical objects that take values
over continuous ranges, such as the set of numbers x between 0 and 1, or mathematical
functions plotted as smooth curves. These objects come with their own class of
mathematical methods, but are mostly distinct from the methods for discrete
problems on which we will focus.

In recent decades, discrete mathematics has been a topic of extensive research due to
the advent of computers with high computational capabilities that operate in "discrete"
steps and store data in "discrete" bits. This makes it important for us to understand the
principles of discrete mathematics as they are useful in understanding the underlying
ideas of software development, computer algorithms, programming languages, and
cryptography. These computer implementations play a crucial role in applying principles
of discrete mathematics to real-world problems.

Some real-world applications of discrete mathematics are as follows:

• Cryptography: The art and science of converting data or information into an
encoded form that can ideally only be decoded by an authorized entity. This
field makes heavy use of number theory, the study of the counting numbers, and
algorithms on base-n number systems. We will learn more about these topics in
Chapter 2, Formal Logic and Constructing Mathematical Proofs.

• Logistics: This field makes use of graph theory to simplify complex logistical
problems by converting them to graphs. These graphs can further be used to find
the best routes for shipping goods and services, and so on. For example, airlines use
graph theory to map their global airplane routing and scheduling. We investigate
some of these issues in the chapters of Part II, Implementing Discrete Mathematics in
Data and Computer Science.

• Machine Learning: This is the area that seeks to automate statistical and analytical
methods so systems can find useful patterns in data, learn, and make decisions with
minimal human intervention. This is frequently applied to predictive modeling and
web searches, as we will see in Chapter 5, Elements of Discrete Probability, and most
of the chapters in Part III, Real-World Applications of Discrete Mathematics.

6 Key Concepts, Notation, Set Theory, Relations, and Functions

• Analysis of Algorithms: Any set of instructions to accomplish a task is an
algorithm. An effective algorithm must solve the problem, terminate in a useful
amount of time, and not take up too much memory. To ensure the second
condition, it is often necessary to count the number of operations an algorithm
must complete in order to terminate, which can be complex, but can be done
through methods of combinatorics. The third condition requires a similar
counting of memory usage. We will encounter some of these ideas in Chapter 4,
Combinatorics Using SciPy, Chapter 6, Computational Algorithms in Linear Algebra,
and Chapter 7, Computational Requirements for Algorithms.

• Relational Databases: They help to connect the different traits between data
fields. For example, in a database containing information about accidents in
a city, the "relational feature" allows the user to link the location of the accident
to the road condition, lighting condition, and other necessary information.
A relational database makes use of the concept of set theory in order to group
together relevant information. We see some of these ideas in Chapter 8, Storage
and Feature Extraction of Trees, Graphs, and Networks.

Now that we have a rough idea of what discrete mathematics is and some of its
applications, we will discuss set theory, which forms the basis for this field in the
next section.

Elementary set theory
"A set is a Many that allows itself to be thought of as a One."

– Georg Cantor
In mathematics, set theory is the study of collections of objects, which is prerequisite
knowledge for studying discrete mathematics.

Definition–Sets and set notation
A set is a collection of objects. If a set A is made up of objects a1, a2, …, we write it as
A = {a1, a2, …}.

Definition: Elements of sets
Each object in a set A is called an element of A, and we write an ∈ A.

Elementary set theory 7

Definition: The empty set
The empty set is denoted .

Sets may contain many sorts of objects—numbers, points, vectors, functions, or even
other sets.

Example: Some examples of sets
Examples of sets include the following:

• The set of prime numbers less than 10 is A = {2, 3, 5, 7}.

• The set of the three largest cities in the world is {Tokyo, Delhi, Shanghai}.

• The natural numbers are a set N = {1, 2, 3, …}.

• The integers are a set Z = {…, -3, -2, -1, 0, 1, 2, 3, …}.

• If B, C, and D are sets, A = {B, C, D} is a set of sets.

• The real numbers are written R = (-∞, ∞), which consists of the entire number line.
Note that it is not possible to list the real numbers within braces, as we can with
N or Z.

Definition: Subsets and supersets
A set A is a subset of B if all elements in A are also in B, and we write it as A B. We call B
a superset of A. If A is a subset of B, but they are not the same set, we call A a proper
subset of B, and write A B.

It is helpful to have an alternative notation in order to construct sets satisfying certain
criteria, which we call set-builder notation, defined next.

Definition: Set-builder notation
A set may be written as {x ∈ A | Conditions}, which consists of the subset of A such that
the given conditions are true.

Sometimes, sets will be expressed as {x | Conditions} when it is obvious what kind of
mathematical object x is from the context.

8 Key Concepts, Notation, Set Theory, Relations, and Functions

Example: Using set-builder notation
Examples of sets constructed by set-builder notation include the following.

• The set of even natural numbers is {2, 4, 6, ...} = {n | n = 2k for some k ∈ N}. This is
an infinite set where each element n is 2 * k, where k is some natural number
belonging to the set {1, 2, 3…..}.

• The closed interval of real numbers from a to b is {x ∈ R | a ≤ x ≤ b} = [a, b].

• The open interval of real numbers from a to b is {x ∈ R | a < x < b} = (a, b).

• The set R2 = {(x, y) | x, y ∈ R} consists of the entire 2D coordinate plane.

• The line with slope 2 and y-intercept 3 is the set {(x, y) ∈ R2 | y = 2x + 3}.

• The open ball of radius r and center (0, 0) is {(x, y) ∈ R2 | x2 + y2 < r}, which is the
interior, but not the boundary of a circle.

• A circle of radius r and center (0, 0) is {(x, y) ∈ R2 | x2 + y2 = r}, which is the
boundary of the circle.

• The set of all African nations is {x ∈ Nations | x is in Africa}.

There are some useful operations that may be done to pairs of sets, which we will see in
the next definition.

Definition: Basic set operations
Let A and B be sets. Let's take a look at the basic operations:

• The union of sets A and B is the set of all elements in A or B (or both) and is
denoted A B = {x | x ∈ A or x ∈ B}.

• A union of sets A1, A2, … is denoted ⋃𝐴𝐴𝑛𝑛
∞

𝑛𝑛=1
 .

• The intersection of sets A and B is the set of all elements in both A and B. It is
denoted A B = {x | x ∈ A and x ∈ B}.

• An intersection of sets A1, A2, … is denoted ⋂𝐴𝐴𝑛𝑛
∞

𝑛𝑛=1
 .

• The complement of set A is all elements in the set that are not in A and is denoted
AC = {x | x A}.

• The difference between sets A and B is the set of all elements in A, but not B,
denoted A - B = {x ∈ A | x B}.

Elementary set theory 9

It is often useful to represent these set operations with Venn diagrams, which are visual
displays of sets. Here are some examples of the operations shown previously:

• The following displays A B:

Figure 1.3 – A B

• The following displays A B:

Figure 1.4 – A B

• The following displays Ac:

Figure 1.5 – Ac

• The following displays A – B:

Figure 1.6 – A - B

10 Key Concepts, Notation, Set Theory, Relations, and Functions

As an example, consider the following diagram. We can use the language of set theory to
describe many aspects of the diagram:

• Elements a, b, and d are in set A, which we can write as a, b, d ∈ A.

• Elements c and d are in set B, and c, d ∈ B.

• Element c is not in A, so we could write c A or c ∈ AC.

• Element d is in both A and B, or d ∈ A B.

• All four elements are in A or B (or both), so we could say a, b, c, d ∈ A B:

Figure 1.7 – Two sets with some elements

Definition: Disjoint sets
Sets A and B are disjoint (or mutually exclusive) if A B = . In other words, the sets
share no elements in common.

Example: Even and odd numbers
Consider sets of even natural numbers E = {2, 4, 6, ...} and odd natural numbers O = {1, 3,
5, ...}. These sets are disjoint, E O = , since no number is both odd and even.

• E is a subset of the natural numbers, E N.

• O is a subset of the natural numbers, O N.

The union of E and O make up the set of all-natural numbers, E O = N.

Theorem: De Morgan's laws
De Morgan's laws state how mathematical concepts are related through their opposites.
In set theory, these laws make use of complements to address the intersection and union
of sets.

Elementary set theory 11

De Morgan's laws can be written as follows:

1. (A B)C = AC BC

2. (A B)C = AC BC

The following diagrams display De Morgan's laws:

Figure 1.8 – De Morgan's laws (A B)C = AC BC

Figure 1.9 – De Morgan's laws (A B)C = AC BC

Proof:

Let's now look at the proof of this theorem:

Let x ∈ (A B)C, then x (A B), which means x A and x B, or x ∈ AC and x ∈ BC,
or x ∈ AC BC. Thus, (A B)C is a subset of AC BC.

Next, let x ∈ (AC BC), then x ∈ AC and x ∈ BC, or x A and x B, then x (A B)

or x ∈ (A B)C. Like the last step, we see AC BC is a subset of (A B)C. Since (A B)C is

a subset of AC BC and vice versa, (A B)C = AC BC.

12 Key Concepts, Notation, Set Theory, Relations, and Functions

The proof of this result is similar and is left as an exercise for the reader.

Notice that the preceding method of proof is designed to show that any element of
(A B)C is an element of AC BC, and to show that any element of AC BC is an element
of (A B)C, which establishes that the two sets are the same.

Example: De Morgan's Law
Consider two sets of natural numbers, the even numbers E = {2, 4, 6, …} and
A = {1, 2, 3, 4}. If we take the set of elements in either set, or the complement of the union
of the sets, we have (E A)C = {1, 2, 3, 4, 6, 8, 10, …}C = {5, 7, 9, …}.

De Morgan's law states that the intersection of the complements of the sets should be
equal to this. Let's verify that this is true. The complements of the sets are EC = {1, 3, 5, …}
and AC = {5, 6, 7, …}. The intersection of these complements is EC AC = {5, 7, 9, …}.

Definition: Cardinality
The cardinality, or size, of a set A is the number of elements in the set and is denoted |A|.

Example: Cardinality
The cardinalities of some sets are computed here:

• If A = {0, 1}, then of course its cardinality is |A| = 2, since there are two elements in
the set.

• The cardinality of the set B = {x ∈ N | x < 10} is less obvious, but we can write B
more explicitly. It is the set of natural numbers less than 10, so B = {1, 2, 3, 4, 5, 6, 7,
8, 9} and, clearly, |B| = 9.

• For the set of odd natural numbers, O = {1, 3, 5, ...}, we have an infinite cardinality,
|O| = ∞, as this sequence goes on forever.

With our knowledge of set theory, we can now move on to learn about relations between
different sets and functions, which help us to map each element from a set to exactly one
element in another set.

Functions and relations
"Gentlemen, mathematics is a language."

– Josiah Willard Gibbs

Functions and relations 13

We are related to different people in different ways; for example, the relationship between
a father and his son, the relationship between a teacher and their students, and the
relationship between co-workers, to name just a few. Similarly, relationships exist
between different elements in mathematics.

Definition: Relations, domains, and ranges
• A relation r between sets X and Y is a set of ordered pairs (x, y) where x ∈ X and

y ∈ Y.

• The set {x ∈ X | (x, y) ∈ r for some y ∈ Y} is the domain of r.

• The set {y ∈ Y | (x, y) ∈ r for some x ∈ X} is the range of r.

More informally, a relation pairs element of X with one or more elements of Y.

Definition: Functions
• A function f from X to Y, denoted f : X→Y, is a relation that maps each element

of X to exactly one element of Y.

• X is the domain of f.

• Elements of the function (x, y) are sometimes written (x, f(x)).

As the definitions reveal, functions are relations, but must satisfy a number of additional
assumptions, in other words, every element of X is mapped to exactly 1 element of Y.

Examples: Relations versus functions
Let's look at X = {1, 2, 3, 4, 5} and Y = {2, 4, 6, …}. Consider two relations between X
and Y:

• r = {(3, 2), (3, 6), (5, 6)}

• s = {(1, 4), (2, 4), (3, 8), (4, 6), (5, 2)}

The domain of r is {3,5} and the range of r is {2, 6} while the domain of s is all of X and the
range of s is {2, 4, 6, 8}.

Relation r is not a function because it maps 3 to both 2 and 6. However, s is a function
with domain X since it maps each element of X to exactly one element of Y.

14 Key Concepts, Notation, Set Theory, Relations, and Functions

Example: Functions in elementary algebra
Elementary algebra courses tend to focus on specific sorts of functions where the domain
and range are intervals of the real number line. Domain values are usually denoted by x
and values in the range are denoted by y because the set of ordered pairs (x, y) that satisfy
the equation y = f(x) plotted on the Cartesian xy-plane form the graph of the function, as
can be seen in the following diagram:

Figure 1.10 – Cartesian xy-plane

While this typical type of functions may be familiar to most readers, the concept of a
function is more general than this. First, the input or the output is required to be
a number. The domain of a function could consist of any set, so the members of the set
may be points in space, graphs, matrices, arrays or strings, or any other types of elements.

In Python and most other programming languages, there are blocks of code known as
"functions," which programmers give names and will run when you call them. These
Python functions may or may not take inputs (referred to as "parameters") and return
outputs, and each set of input parameters may or may not always return the same output.
As such, it is important to note Python functions are not necessarily functions in the
mathematical sense, although some of them are.

This is an example of conflicting vocabulary in the fields of mathematics and computer
science. The next example will discuss some Python functions that are, and some that are
not, functions in the mathematical sense.

Functions and relations 15

Example: Python functions versus mathematical
functions
Consider the sort() Python function, which is used for sorting lists. See this function
applied to two lists – one list of numbers and one list of names:

numbers = [3, 1, 4, 12, 8, 5, 2, 9]
names = ['Wyatt', 'Brandon', 'Kumar', 'Eugene', 'Elise']

Apply the sort() function to the lists
numbers.sort()
names.sort()

Display the output
print(numbers)
print(names)

The output is as follows:

[1, 2, 3, 4, 5, 8, 9, 12]
['Brandon', 'Elise', 'Eugene', 'Kumar', 'Wyatt']

In each case, the sort() function sorts the list in ascending order by default (with
respect to numerical order or alphabetical order).

Furthermore, we can say that sort() applies to any lists and is a function in the
mathematical sense. Indeed, it meets all the criteria:

1. The domain is all lists that can be sorted.

2. The range is the set of all such lists that have been sorted.

3. sort() always maps each list that can be inputted to a unique sorted list
in the range.

Consider now the Python function random, shuffle(), which takes a list as an input
and puts it into a random order. (Just like the shuffle option on your favorite music app!)
Refer to the following code:

import random

Set a random seed so the code is reproducible
random.seed(1)

16 Key Concepts, Notation, Set Theory, Relations, and Functions

Run the random.shuffle() function 5 times and display the
 # outputs
for i in range(0,5):
 numbers = [3, 1, 4, 12, 8, 5, 2, 9]
 random.shuffle(numbers)
 print(numbers)

The output is as follows:

[8, 4, 9, 2, 1, 3, 5, 12]
[5, 1, 3, 8, 2, 12, 9, 4]
[2, 1, 12, 9, 5, 4, 8, 3]
[1, 2, 3, 12, 5, 8, 4, 9]
[5, 8, 9, 12, 4, 3, 2, 1]

This code runs a loop where each iteration sets the list numbers to [3, 1, 4, 12, 8, 5,
2, 9], applies the shuffle function to it, and prints the output.

In each iteration, the Python function shuffle() takes the same input, but the output
is different each time. Therefore, the Python function shuffle() is not a mathematical
function. It is, however, a relation that can pair each list with any ordering of itself.

Summary
In this chapter, we have discussed the meaning of discrete mathematics and discrete
objects. Furthermore, we provided an overview of some of the many applications of
discrete mathematics in the real world, especially in the computer and data sciences,
which we will discuss in depth in later chapters.

In addition, we have established some common language and notation of importance
for discrete mathematics in the form of set notation, which will allow us to refer to
mathematical objects with ease, count the size of sets, represent them as Venn diagrams,
and much more. Beyond this, we learned about a number of operations that allow us to
manipulate sets by combining them, intersecting them, and finding complements. These
give rise to some of the foundational results in set theory in De Morgan's laws, which
we will make use of in later chapters.

Summary 17

Lastly, we took a look at the ideas of functions and relations, which map mathematical
objects such as numbers to one another. While certain types of functions may be familiar
to the reader from high school or secondary school, these familiar functions are typically
defined on continuous domains. Since we focus on discrete, rather than continuous,
sets in discrete mathematics, we drew the distinction between the familiar idea and
a new one we need in this field. Similarly, we showed the difference between functions
in mathematics and functions in Python and saw that some Python "functions" are
mathematical functions, but others are not.

In the remaining four chapters of Part I: Core Concepts of Discrete Mathematics, we will fill
our discrete mathematics toolbox with more tools, including logic in Chapter 2, Formal
Logic and Constructing Mathematical Proofs, numerical systems, such as binary and
decimal, in Chapter 3, Computing with Base n Numbers, counting complex sorts of objects,
including permutations and combinations, in Chapter 4, Combinatorics Using SciPy, and
dealing with uncertainty and randomness in Chapter 5, Elements of Discrete Probability.
With this array of tools, we will be able to consider more and more real-world applications
of discrete mathematics.

2
Formal Logic

and Constructing
Mathematical Proofs
This chapter is an introduction to formal logic and mathematical proofs. We'll first
introduce some primary results of formal logic and prove logical statements with the use
of truth tables. In the remainder of the chapter, we'll consider the most common methods
of mathematical proofs (direct proof, proof by contradiction, and proof by mathematical
induction) to build skills that you will need for more complex problems to come later.

In this chapter, we will cover the following topics:

• Formal logic and proofs by truth tables

• Direct mathematical proofs

• Proof by contradiction

• Proof by mathematical induction

20 Formal Logic and Constructing Mathematical Proofs

By the end of the chapter, you will have a grasp of how formal logic provides a grounding
for deductive thought, you will have learned how to model logical problems with
truth tables, you will have proved claims with truth tables, and you will have learned
how to construct mathematical proofs using several methods: direct proof, proof
by contradiction, and proof by mathematical induction. This short introduction to
mathematical proofs will help you to learn how to think like a mathematician, use
powerful deductive thought, and learn the later material in the book.

Important Note
Please navigate to the graphic bundle link to refer to the color images for
this chapter.

Formal Logic and Proofs by Truth Tables
We will be interested in arguments about mathematical structures and mathematical
proofs throughout the book so that we can establish mathematical truths that will be used
in practical problems. For this reason, in this section, we wish to establish some familiarity
with the strict logic required to establish some mathematical theory that allows us to solve
practical mathematical problems.

The foundation of all mathematics is logic, which studies how we can construct logically
sound arguments that show that certain assumptions lead to certain conclusions with no
doubt. In particular, formal logic abstracts away any specifics of the particular arguments
being constructed in order to focus on the structure of the arguments, which can establish
some general principles or shortcuts that can be used in specific arguments. Aristotle
developed many principles of syllogistic logic, which is logic focusing on arguments that
deductively lead from some assumptions to a conclusion. This work, dating all the way
back to the 300s BCE, in fact, is still widely used today. The modern study of formal logic
uses and builds upon the pioneering work of Aristotle.

Basic Terminology for Formal Logic
Before proceeding to study formal logic, we need to define some terms and notation to
facilitate the discussion. Informally, logic studies how some statements lead to certain
consequences. This sounds abstract, so let's consider an example.

Formal Logic and Proofs by Truth Tables 21

Suppose we want to use some simple mathematical reasoning to show that if a positive
integer is a multiple of 4, then it is also a multiple of 2. Of course, we probably all
intuitively know that this is true based on our experience with arithmetic, but let's
carefully write down some reasoning for this claim, step by step, as an example:

1. n is a positive integer.

2. n is a multiple of 4.

3. There exists some positive integer, m, where n = 4m.

4. If we factor out 2 on the right side of the equation, we find n = 2(2m).

5. Therefore, n is a multiple of 2.

Let's break this down into pieces and define them in the context of the vocabulary of
formal logic:

• Each line of a chain of reasoning that is either true or false is called a statement:

a) All five lines in the preceding reasoning are statements.
• A collection of statements is called an argument:

a) The whole collection of statements 1–5 makes up an argument.

b) Note that the word "argument" may be used differently in everyday conversation,
but the arguments studied by formal logic must not include any ambiguity, only
statements.

• Exactly one statement of an argument is called the conclusion:

a) Statement 5 is the conclusion.

b) Conclusions usually come at the end.

c) Conclusions are usually things we would like to prove in mathematical
arguments.

• All other statements of the argument are called premises:

a) Statements 1–4 are premises.
• An argument is called valid if the conclusion must be true when all the premises

are true:

a) The preceding argument is valid because statement 5 (the conclusion) must be
true when the first four statements (or premises) are true.

• Any argument that is not valid is called invalid.

22 Formal Logic and Constructing Mathematical Proofs

In other words, in a valid argument, the premises must unambiguously lead to the
conclusion, as is true in our preceding simple mathematical argument.

An invalid argument is one where all the premises could be true, but the conclusion is still
false. To make this clearer, let's consider an example.

Example – an invalid argument
Consider the following argument:

1. n is a positive integer.

2. n is a multiple of 3.

3. n is a multiple of 5.

4. 3 and 5 are both odd numbers.

5. Therefore, n is an odd number.

So, we have a positive integer, n, which is a multiple of both 3 and 5, which are odd
numbers. Assume statements 1–4 are true premises and statement 5 is the conclusion of
the argument. Is this a valid argument?

It makes some sense; lots of multiples of 3 are odd:

3, 9, 15, …

And lots of multiples of 5 are odd:

5, 15, 25, …

So, does it make sense to conclude that n is odd? No! There are some numbers that are
multiples of both 3 and 5 that are not odd, as follows:

30, 60, 90, …

These are even numbers, so statements 1–4 could be true and n could still be an even
number—that is, statement 5 is false. In other words, it is possible for all premises of the
argument (statements 1–4) to be true but for the conclusion of the argument (statement 5)
to be false simultaneously, so this argument is invalid.

A point that might be surprising is that a valid argument is not always a good argument
practically speaking. Let's consider an example.

Formal Logic and Proofs by Truth Tables 23

Example – all penguins live in South Africa!
Consider the following silly argument:

1. All penguins are orange.

2. All orange animals live in countries on the equator.

3. The equator passes through only one country.

4. South Africa is on the equator.

5. All penguins live in South Africa.

Suppose statements 1 and 2 are true. Therefore, all penguins are orange and all orange
animals live in countries on the equator, which means all penguins live in countries on
the equator. If statements 3 and 4 are true, the only country the equator passes through
is South Africa. Combining these two, we can conclude that the only country penguins
could live in is South Africa. Thus, these statements imply statement 5 is true.

Here, if the premises (statements 1–4) are true, then the conclusion (statement 5) must be
true. Thus, the argument is valid by definition.

There is clearly a problem: none of these premises are actually true! Penguins are not
ordinarily orange, many penguins live in cold climates far from the equator, orange
animals such as tigers live in countries that are not on the equator, the equator passes
through many countries, and South Africa is not one of those countries:

Figure 2.1 – Penguins are certainly not all orange (left) and the equator (the dotted line on the map) is
nowhere near South Africa (right)!

24 Formal Logic and Constructing Mathematical Proofs

As we can see, a valid argument is not always a "good" argument, practically speaking.
It simply means that if the premises are true, then the conclusion is true. There is no
requirement for the premises to actually be true.

This may seem unusual, but it reveals something important: logic studies the
consequences of assumptions we choose to make. It is not necessarily concerned with
what is true, except for the matter of whether the premises imply the conclusions in an
argument.

Next, let's introduce some common notations for writing about arguments to facilitate
some analysis of arguments we would like to do.

Cores Ideas in Formal Logic
We will represent statements (also frequently called propositions in this context) with
single lowercase letters, typically p, q, and r.

In logical arguments, we frequently want to modify propositions and combine
propositions to build compound propositions that are more complex or more interesting.
For the upcoming ideas, let's consider two simple propositions about a positive integer, n:

• p: 5 is a multiple of 2

• q: 6 is a multiple of 3

For example, we might want to form a proposition "p and q" or, in more readable terms, "5
is a multiple of 2 and 6 is a multiple of 3," which is still a proposition, just a more complex
proposition. As a proposition, of course, it still may be true or false.

More formally, logical connectives are words or symbols that connect or modify
propositions. There is some common notation used for many common connectives. Some
of the most common are defined here and the verbal equivalent for the preceding example
is given for each:

• The negation of a proposition is denoted ~p, which is true only when p is not true.

a) "5 is not a multiple of 2," which is true since p is false.
• The conjunction of two propositions is true only when both p and q are true and

it is written as follows:

a) "5 is a multiple of 2 and 6 is a multiple of 3," which is false since p is false.

𝑝𝑝 ∧ 𝑞𝑞

Formal Logic and Proofs by Truth Tables 25

• The disjunction of two propositions is true when p or q (or both) is true, and it is
written as follows:

a) "5 is a multiple of 2 or 6 is a multiple of 3," which is true since q is true.

b) The disjunction is sometimes called the inclusive "or."
• The conditional or implication is true if p is false or q is true and is written

as follows:

a) "If 5 is a multiple of 2, then 6 is a multiple of 3," which is true since p is false.

b) You can think of a conditional as saying that q is a consequence of p being true.
It does not say anything about q if p is false.

c) Stated in another way, a conditional is only false in the situation where p is true
and q is false. In other words, if the conditional is true, p cannot be true unless q
is also true.

d) We will frequently say p implies q.
• The biconditional is true if p and q are both true or both false and is written

as follows:

a) "5 is a multiple of 2 if and only if 6 is a multiple of 3," which is false since p is
false, but q is true.

b) Stated a different way, this means p and q are equivalent propositions.
The following figure shows a summary of the common logical connectives we have
discussed:

Figure 2.2 – Logical connectives

𝑝𝑝 ∨ 𝑞𝑞

𝑝𝑝 → 𝑞𝑞

𝑝𝑝 ↔ 𝑞𝑞

26 Formal Logic and Constructing Mathematical Proofs

Next, we will learn about truth tables, which provide us with a way to determine whether
different compound propositions are equivalent or whether they disagree with one
another under some circumstances.

Truth Tables
As you might suspect, it is possible to build complex propositions by combining more and
more simple propositions with logical connectives, as follows:

It would be somewhat difficult to determine whether this is a valid argument by pure
thought, so a diagram would be helpful. This is exactly what truth tables do. They let
us break complex logical propositions down into their component parts and determine
whether arguments are valid.

More specifically, a truth table is a table of binary values (0 for false and 1 for true), where
we consider every possible combination of truth-values (true or false) of the simple
propositions and can determine truth-values by applying one logical connective at a time.
As an exercise, let's build a truth table for each of the common logical connectives. The
first one is the negation:

Figure 2.3 – Truth table for the negation connective

This truth table is small—it only involves one proposition, which can be true or false. Of
course, the negation just has opposite truth-values in each case.

The other logical connectives involve two propositions, so there are more states—we need
to consider every combination of truth-values for each proposition. We present them in
the following figure:

Figure 2.4 – Truth tables for the binary logical connectives

(𝑝𝑝 → 𝑞𝑞) ∧ (𝑞𝑞 → 𝑟𝑟) → (𝑝𝑝 → 𝑟𝑟)

Formal Logic and Proofs by Truth Tables 27

These tables are pretty simple to create for these simple logical connectives, and more or
less simply represent the definitions in a table form.

Let's see how we can check whether some arguments are equivalent with some examples.

Example – The Converse
A conditional, "if p, then q" looks as follows:

The converse is the conditional in the opposite direction, "if q, then p," which looks as
follows:

The question is: are these propositions equivalent to each other? Let's construct a truth
table containing both of these propositions and see whether they are equivalent:

Figure 2.5 – Truth table for a conditional and its converse. The columns containing the truth-values of
the two propositions being compared are shaded

Notice that the two conditionals do not always agree with one another. If one statement is
true but the other is false, the conditionals do not have the same truth-values, so they are
not equivalent. In other words, the biconditional is false:

This means that, if p implies q, it is not necessarily true that q implies p. This should make
some sense intuitively. For example, it is true that "if n is divisible by 4, then n is divisible
by 2," but it is not true that "if n is divisible by 2, then n is divisible by 4" because n could
be 6 or 10, which are not divisible by 4.

Let's consider another example that has some important consequences for arguments.

𝑝𝑝 → 𝑞𝑞

𝑞𝑞 → 𝑝𝑝

(𝑝𝑝 → 𝑞𝑞) ↔ (𝑞𝑞 → 𝑝𝑝)

28 Formal Logic and Constructing Mathematical Proofs

Example – Transitivity Law of Conditional Logic
If we show p implies q and q implies r, it seems intuitive that we could simply say p implies
r, but can we show this with a truth table? In other words, can we establish the difficult
proposition we wrote previously?

Let's create a truth table. This time, we have three basic propositions in p, q, and r, so
our truth table will need to consider every combination of truth-values of these three
propositions:

Figure 2.6 – A truth table confirming the transitive rule. The columns containing the truth-values of the
two propositions being compared are shaded

Therefore, we see the proposition in the rightmost column is always true. This means,
regardless of the truth-values of the propositions p, q, and r, the proposition is true.
Therefore, anytime we can prove p implies q and q implies r, we have automatically proven
p implies r. As a result, we can chain implications in a sequence to establish a conclusion.
This is sometimes called the transitivity law for implications.

Let's try another example.

(𝑝𝑝 → 𝑞𝑞) ∧ (𝑞𝑞 → 𝑟𝑟) → (𝑝𝑝 → 𝑟𝑟)

Formal Logic and Proofs by Truth Tables 29

Example – De Morgan's Laws
Suppose we have two propositions, p and q, and consider the negation of their
conjunction. We would like to prove De Morgan's laws, one of which states this is
equivalent to the disjunction of their negations. In symbols, this looks as follows:

In simpler words, this says that "p and q are not both true" is equivalent to stating "p is not
true, or q is not true." Let's use a truth table to see whether it is true:

Figure 2.7 – A truth table confirming one of De Morgan's laws. The columns containing the truth-values
of the two propositions being compared are shaded

As we see from the truth table, this one of De Morgan's laws is true since the two sides of
the biconditional are equivalent to one another. It should be noted there is another of De
Morgan's laws that may be written as follows:

This one says that "p or q is not true" (keeping in mind this is the inclusive "or") is
equivalent to "p is not true and q is not true." This one can be proven very similarly in the
next truth table:

Figure 2.8 – A truth table confirming another of De Morgan's laws. The columns containing the
truth-values of the two propositions being compared are shaded

~(𝑝𝑝 ∧ 𝑞𝑞) ↔ (~𝑝𝑝 ∨ ~𝑞𝑞)

~(𝑝𝑝 ∨ 𝑞𝑞) ↔ (~𝑝𝑝 ∧ ~𝑞𝑞)

30 Formal Logic and Constructing Mathematical Proofs

These laws are named for Augustus De Morgan, who first stated them in terms of formal
logic as we have here in the 1800s, although the ideas were known before this. These laws
can allow us to do a trick to convert something we would like to prove, such as "p and
q are not both true," and instead prove "p is false or q is false," which may sound like an
obvious step, but when the propositions become much more complex, it is not always
so easy.

Let's look at one more example that can provide a helpful trick for proofs that is far less
obvious.

Example – The Contrapositive
Suppose we need to prove p implies q:

But this proves difficult. It turns out that there is an alternative: the contrapositive. The
contrapositive says, "not q implies not p," which looks as follows:

The contrapositive seems similar to the converse, except for the negations on each side of
the conditional. Let's compare them on a truth table:

Figure 2.9 – A truth table confirming the conditional is equivalent to the contrapositive. The columns
containing the truth-values of the two propositions being compared are shaded

As we can see from the truth table, the conditional is true precisely when the
contrapositive is true, so the two ideas are equivalent. We will see a way in which this can
be used to drastically shorten a mathematical proof as follows.

𝑝𝑝 → 𝑞𝑞

~𝑞𝑞 → ~𝑝𝑝

Direct Mathematical Proofs 31

With these formal logical results in hand, we will move on to discussing some different
styles of mathematical proofs, all of which are valid logical arguments, and some examples
where they can be applied. We encourage you to read the mathematical claim we make
and try to prove it on your own before reading our proofs. The best way to improve with
making mathematical arguments is to try them on your own.

The subject matter is not especially important to building skills with mathematical proofs,
so we have chosen many examples using only simple topics such as whole numbers.
We believe this is the best way to learn how to construct proofs so that you can focus
on the structure of the arguments without too much distraction. This will allow you to
focus on the skills needed to practice the careful styles of thought required to establish
mathematical truth.

In this section, we learned about the basic terminology for formal logic, common logical
connectives such as negation, conjunction, disjunction, conditional, and so on. We also
learned about truth tables and came up with multiple truth tables for examining the
transitivity law of conditional logic, contrapositive, De Morgan's laws, and so on.

In the next section, we will use the ideas covered in this section and investigate
mathematical proofs.

Direct Mathematical Proofs
In this section, we will look into how mathematical proofs are constructed and understand
this with a few simple examples.

The simplest way to establish a mathematical truth is through a direct proof that shows the
definitions of the terms led through a sequence of deductions that lead to the conclusion
we wish to prove.

Let's look at a simple example and construct our own proof showing that the product of
an even and an odd integer is itself an even number.

Example – Products of Even and Odd Integers
Let x be an even integer. This means x is a multiple of 2, so there exists an integer n where
we have the following:

x = 2n

32 Formal Logic and Constructing Mathematical Proofs

Let y be an odd integer. This means y is not a multiple of 2, which means when we divide
it by 2, we will have a remainder of 1, which means there is an integer m such that we have
the following:

y = 2m + 1

If we multiply them together, we find the following:

xy = (2n)(2m + 1)

xy = 4nm + 2n

xy = 2(2nm + n)

Since 2nm + n is made up of a product and sum of integers, it is also an integer. Therefore,
the product of x and y equals 2 multiplied by an integer. This means the product xy is
a multiple of 2—in other words, it is an even integer.

As you can see, the ideas here were simple. We wrote down precisely what it means for x
to be even and y to be odd. Then, we did some algebraic manipulations and found that the
product xy is a multiple of 2 and, therefore, an even number.

The structure of any mathematical proof has some things in common: each step leads
logically to the next. Constructing a valid proof, however, must follow very strict
deductive steps. There can be absolutely no guesswork in a mathematical proof. We can
add no extra assumptions without changing the statement we have proven. This can make
proofs difficult to construct sometimes and the conclusions of a single proof are often
somewhat narrow, but mathematical proofs establish quite possibly the closest thing to
absolute truth humans can produce.

Let's try another proof, again regarding even and odd integers.

Example – roots of even numbers
Suppose n2 is an even number where n is a positive integer. We will determine whether n
is even or odd. There are only two possibilities: n is even or n is odd. If n is even, there is
a non-negative integer k where we have the following:

n = 2k

In this case, if we square n, we have the following:

n2 = (2k)(2k)

n2 = 4k2

n2 = 2(2k2)

Direct Mathematical Proofs 33

Therefore, n2 is 2 times 2k2. Clearly, 2k2 is an integer, so this means n2 is an even number.

We have not proven what we wanted to prove yet. We have instead proven the converse of
the goal: if n is even, then n2 is even. As we saw in the previous section, the converse is not
equivalent to the original conditional proposition. We are not finished, then. But, if we can
show the only other possibility, that n is odd implies n2 is odd, then we can know that n
must be even.

If n is odd, there is a non-negative integer m where we have the following:

n = 2m + 1

In this case, if we square n, we have the following:

n2 = (2m + 1)2

n2 = (2m + 1)(2m + 1)

n2 = 4m2 + 2m + 2m + 1

n2 = 4m2 + 4m + 1

n2 = 2(2m2 + 2m) + 1

Therefore, n2 equals 2 times 2m2 + 2m plus 1. Clearly 2m2 + 2m is an integer, so this means
n2 is an odd number under the assumption we made, that n was odd.

In summary, we showed if n is odd, n2 must be odd, and if n is even, n2 must be even.
Since these are the only possible states for n, this means if n2 is even, then n must be even.

Shortcut – The Contrapositive
We have successfully proven the preceding statement, but note that we can break the
argument up into separate pieces:

p: n2 is even

q: n is even

We also proved that p implies q. However, it took significant time and effort and really did
not flow from start to finish so easily. As we showed in the previous section, proving the
conditional p implies q is equivalent to the contrapositive:

~𝑞𝑞 → ~𝑝𝑝

34 Formal Logic and Constructing Mathematical Proofs

In this problem, this implication would read "if n is not even, then n2 is not even," or,
we might say "if n is odd, then n2 is odd." We actually proved this in the example using
the second batch of equations. It turns out, proving just that is the contrapositive, which
is equivalent to the original goal of proving p implies q, so the contrapositive was a more
efficient approach.

In this section, we learned about some simple mathematical proofs and worked on
constructing them. We recommend adding the contrapositive to your toolbox of proof
techniques for this sort of situation. It is helpful to try to use it when a direct proof seems
difficult, but it is easy to state the negations of the propositions making up the conditional
we hope to prove.

In the next section, we will learn about proving by contradiction.

Proof by Contradiction
In this section, we will learn about using contradiction for mathematical proofs. Proof by
contradiction is a method of proof where you first assume the claim you wish to prove is
false, and then prove through a series of logical deductions that this assumption results in
a contradictory claim. If this happens, and we have made no errors, this assumption that
the claim was false must have been incorrect. Thus, the claim must be true.

While this idea may make sense abstractly and we see the proof method is confirmed
by formal logic, the authors believe the method is best demonstrated by examples if you
hope to build some intuitive understanding of the approach, learn when it is likely to be
effective, and construct your own mathematical proofs.

First, let's review some ideas we all probably learned in primary school. Recall a real
number x is called rational if it can be written as a ratio:

Here, a and b ≠ 0 are relatively prime integers—that is, numbers who share no common
factors or only a common factor of 1—a and b may be negative or positive whole
numbers, and a could be 0. For example, the following numbers are rational:

Of these rational numbers, note that only one of these numbers, five-sevenths, is actually
written as a ratio of two relatively prime numbers. The keywords in the definition of
rational numbers are that they can be written in this way. Note that all the numbers listed
can be written this way, meaning they are in fact rational numbers:

𝑥𝑥 = 𝑎𝑎
𝑏𝑏

0.5, 57 ,
10
100 ,

40
2 ,−129103412812008 , 3, 𝜋𝜋2𝜋𝜋 , 0

Proof by Contradiction 35

Figure 2.10 – Each of the rational numbers can be written as a ratio of two relatively prime integers

It would not be unexpected if your first question is "Are there any numbers that cannot
be written as a fraction?" The answer is certainly yes, but the great ancient Greek
mathematicians such as Pythagoras and Euclid debated this question for centuries before
it was settled that, in fact, there are numbers that cannot be written as such a ratio. So, this
is a good question, and you are in good company if you thought to ask it!

Let's see a couple of examples related to rational numbers.

Example – is there a smallest positive rational
number?
The problem here is simple to state: is there a smallest positive rational number? But how
can we tackle this? It seems unlikely that we could create a tiny number and somehow
claim it is the smallest possible one, although it is also not clear that we can say there isn't
such a number. Since no direct path to a proof seems obvious, let's try to prove there is no
such number by proof by contradiction.

Suppose x is the smallest positive rational number. Since it is rational, we can write the
following:

𝑥𝑥 = 𝑎𝑎
𝑏𝑏

36 Formal Logic and Constructing Mathematical Proofs

Here, a and b are relatively prime integers, both of which have the same sign since x is
positive. If we divide x by 2, we get a smaller number:

This number is still positive as no signs have changed. b is a nonzero integer, so 2b is also
a nonzero integer of the same sign. Therefore, y is a positive rational number that is less
than x. This contradicts the assumption that x is the smallest integer. Thus, if you give me
any rational number, I can always give you a smaller one by dividing it by 2, so there is no
smallest positive rational number.

This was a nice, simple example of proof by contradiction, but let's try another one that is
pretty simple in principle, but probably not at all obvious.

Example – Prove √𝟐𝟐 is an Irrational Number
In this example, we will prove the square root of 2 is irrational, which should put this
question to rest. In other words, we will prove the square root of 2 is not rational. We will
set up a proof by contradiction.

First, assume the square root of 2 is rational. Therefore, by definition, there exist relatively
prime numbers a and b where we have the following:

But if we square both sides of the equation, we find the following:

Since b is an integer, so is b2, so a2 is two times an integer, which means a2 is a multiple of
2—in other words, a2 is an even number. As we have proven previously, this means a must
be an even number, so there is an integer n where a = 2n, so we can rewrite the preceding
equation as follows:

Therefore, b2 is an even number, which we have shown implies b is an even number.

𝑦𝑦 = 𝑎𝑎
2𝑏𝑏

√2 = 𝑎𝑎
𝑏𝑏

2 = 𝑎𝑎2
𝑏𝑏2

 2𝑏𝑏2 = 𝑎𝑎2

2𝑏𝑏2 = (2𝑛𝑛)2
 2𝑏𝑏2 = 4𝑛𝑛2

 𝑏𝑏2 = 2𝑛𝑛2

Proof by Contradiction 37

We have shown both a and b are even numbers, so they share a factor of 2, meaning they
are not relatively prime integers. We previously assumed the square root of 2 was rational
and could be written as the ratio of relatively prime integers a and b. Then, the assumption
that the square root of 2 is irrational leads to a contradiction that a and b both are and are
not relatively prime integers.

Next is a famous example of proof by contradiction regarding prime numbers used by
Euclid in approximately 300 BCE. It is actually one of the first known uses of proof by
contradiction.

Example – How Many Prime Numbers Are There?
A prime number is a positive integer greater than 1 that is only divisible by 1 and itself.
The first few prime numbers are 2, 3, 5, 7, and 11. Note that the numbers we skipped have
divisors other than 1 and the number itself. Clearly, 4, 6, 8, and 10 are divisible by 2 and,
indeed, all even numbers except 2 will be prime. 9 is an odd number, but it is not prime
since it is divisible by 3.

The prime numbers are sometimes called the building blocks of the positive integers
because all positive integers can be written as a product of a unique set of prime numbers,
called its prime factorization. Take the following example:

Indeed, no matter how large the initial number, this can be done! Another example is the
following:

Once again, this is made up entirely of prime factors. In each case, the numbers cannot be
broken down into smaller factors, so these factorizations are unique.

The result is now called the fundamental theorem of arithmetic. But interest in primes
goes back to at least ancient Egypt. The Rhind Mathematical Papyrus is an Egyptian
artifact dating to 1500 BCE with some computations with primes! But we know much
more about the work of ancient Greeks mathematicians with primes. They were quite
intrigued by prime numbers. In fact, Euclid proved prime factorizations are unique for all
numbers in approximately 300 BCE. A question that arose millennia ago was: "How many
prime numbers are there?" According to Euclid, there are infinitely many. But how could
he know that? Dealing with infinity can be subtle, so it seems impractical to attempt to
prove this directly. In such a situation, where a direct path to a proof seems difficult,
proof by contradiction is one of the tools in the toolbox of a seasoned mathematician.
Let's try it!

15 = 3 ⋅ 5
 108 = 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 3

35609874300 = 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 29 ⋅ 29 ⋅ 47

38 Formal Logic and Constructing Mathematical Proofs

Assume there are finitely many prime numbers. Without loss of generality, suppose the
number of primes is a finite positive integer m and let's name all primes p1, p2, …, pm. Let n
be a number equal to the product of all the primes plus 1:

This means n – 1 is divisible by p1, p2, …, pm—that is, all of the primes. Each prime number
is greater than 1 by definition. Therefore, dividing n by any prime number would have a
remainder of 1. Therefore, n is not divisible by any of these prime numbers.

By Euclid's fundamental theorem of arithmetic, all positive integers have a unique prime
factorization, so there must be another prime number not in our set. This contradicts
the assumption that there are m primes, which was an arbitrary choice of number, so the
assumption that there are finitely many primes leads to this contradiction. Hence, the
opposite must be true: there are infinitely many primes.

Now, this has completed the proof, but let's zoom in on one point. We said m was an
arbitrary choice, which led to the conclusion we made previously. However, this point is
not too obvious to the uninitiated.

Let's think about this. If we assumed there were m primes, we concluded there are at least
m + 1 prime numbers. Say we repeat this argument with the following:

We will conclude there are at least m + 2 primes, and this could go on forever! No matter
how many primes there are, we have proven there is at least one more!

In this section, we learned about proving by contraction and applied this idea to a few
examples.

In the next section, we will learn about proving by induction.

Proof by mathematical induction
Mathematical induction allows us to prove each of an infinite sequence of logical
statements, p1, p2, ..., is true. The argument involves two steps:

• Basis step: Prove p1 is true.

• Inductive step: For a fixed i ≥ 2 value, assume pi-1 is true and prove pi is true.

If both steps are done successfully, the conclusion is that p1, p2, ... are all true.

𝑛𝑛 = 𝑝𝑝1𝑝𝑝2⋯𝑝𝑝𝑚𝑚 + 1

𝑛𝑛 = 𝑝𝑝1𝑝𝑝2⋯𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚+1 + 1

Proof by mathematical induction 39

But how can we make this conclusion? The idea is that we have shown p1 is true and that
each pi is true assuming pi-1 is true. Therefore, let i = 1, then p2 is true. Let i = 2, then p3 is
true. Let i = 3, then p4 is true. This pattern continues indefinitely, so each pn must be true.

Mathematical induction can be thought of as an infinite line of dominoes standing on
their edges. If you knock one over, it falls into the next, which falls into the next, which
falls into the next, and on and on.

This discussion is admittedly a bit abstract, so let's actually do some proofs by
mathematical induction to understand how it can be used.

Example – Adding 1 + 2 + … + n
Suppose we wish to show that, for any positive integer n, the following formula is true:

We need to show that this is true for all positive integers, n = 1, 2, 3, …, so we get an
infinite chain of statements we want to prove:

Figure 2.11 – Adding example

First, the basis step. Let n = 1; then, the left side of the equation is 1 and the right side is
the following:

So, the formula is true for n = 1. In other words, p1 is true.

1 + 2 + 3 +⋯+ 𝑛𝑛 = 𝑛𝑛(𝑛𝑛 + 1)
2

1(1 + 1)
2 = 2

2 = 1,

40 Formal Logic and Constructing Mathematical Proofs

Second, the inductive step. Let n = i – 1 and assume pi-1 is true, which means the
following:

Let's add i to both sides and try to prove pi is true:

At last, the final line is precisely pi. Therefore, we have proven pi is true, so, by induction,
we have proven the following:

This is for any natural number n by the method of mathematical induction.

In summary, we proved p1 is true for the basis step; that is, the formula is correct for n =
1. Then, we assumed the formula is correct for the sum of the first i – 1 positive integers
for some i ≥ 2. In other words, we assumed pi–1 is true. Next, we showed this assumption
implies pi is true, meaning the formula is correct for the sum of the first i positive integers.

This is the principle of mathematical induction in action, and we are done with the proof
because, if we let i = 2, the proof from the basis step for pi–1 = p1 implies pi = p2 is true by
the inductive step, which implies p3 is true, which implies p4 is true, and on and on, so the
formula is true for any n.

It is important to realize these proof methods can be used with many types of
mathematical structures, not just numbers, so let's consider a more interesting geometric
use of the principle of mathematical induction.

1 + 2 + 3 +⋯+ (𝑖𝑖 − 1) = (𝑖𝑖 − 1)𝑖𝑖
2

1+ 2 + 3 +⋯+ (𝑖𝑖 − 1) + 𝑖𝑖 =
(𝑖𝑖 − 1)𝑖𝑖

2 + 𝑖𝑖

1 + 2 + 3 +⋯+ 𝑖𝑖 =
(𝑖𝑖 − 1)𝑖𝑖

2 + 2𝑖𝑖
2

1 + 2 + 3 +⋯+ 𝑖𝑖 = 𝑖𝑖2 − 𝑖𝑖 + 2𝑖𝑖

2

1 + 2 + 3 +⋯+ 𝑖𝑖 = 𝑖𝑖2 + 𝑖𝑖
2

1 + 2 + 3 +⋯+ 𝑖𝑖 = 𝑖𝑖(𝑖𝑖 + 1)

2

1 + 2 + 3 +⋯+ 𝑛𝑛 = 𝑛𝑛(𝑛𝑛 + 1)
2

Proof by mathematical induction 41

Example – Space-Filling Shapes
Suppose we have a grid of squares that is 2n in length and 2n in height for some positive
integer n. Then, we will call the following specific type of octagon a T-gon, although it
may be rotated:

Figure 2.12 – A T-gon is a shape like the letter T

We will seek to prove that any 2n-by-2n grid with n ≥ 2 can be filled with non-overlapping
T-gons that will only cover space inside the grid. In other words, T-gons can tile the grid.
We can break this claim down into a sequence of statements:

• p2: A 22-by-22 grid can be tiled with T-gons.

• p3: A 23-by-23 grid can be tiled with T-gons.

• p4: A 24-by-24 grid can be tiled with T-gons.

And so on as the exponents grow. Note that we are starting at p2. We could call it p1 as we
have before, but it is easier to simply start at p2, so the subscript corresponds to n.

For the basis step, let n = 2 so that the grid has the shape 22 × 22 = 4 × 4. This is a small
enough grid that we can easily show that four T-gons can fill this grid—that is, we can
prove p2—as we see here:

Figure 2.13 – A 4-by-4 grid can be filled with four T-gons rotated as shown here

42 Formal Logic and Constructing Mathematical Proofs

For the inductive step, let i ≥ 3 and assume that pi – 1 is true; that is, a 2i – 1-by-2i – 1 grid can
be tiled by T-gons. An important insight is that a 2i-by-2i grid can be made up of four
2i – 1-by-2i – 1-adjacent grids aligned in the way displayed in the following diagram:

Figure 2.14 – One 2i-by-2i grid is made up of four adjacent 2i – 1-by-2i – 1 grids

Now, since pi – 1 tells us each of these 2i – 1-by-2i – 1 grids can be tiled by T-gons, we can
simply tile all four of those in the preceding figure so that the larger 2i-by-2i grid is tiled
by T-gons; that is, pi is true. In other words, pi – 1 being true implies pi is true, so T-gons can
tile any grid of dimensions 2n-by-2n by the principle of mathematical induction, so this
completes the proof.

So, we have seen some nice toy examples that are good for understanding the method of
proof by mathematical induction, but let's try another problem that has some practical
implications for comparing the speeds of algorithms, a topic we will study deeply later in
the book.

Example – exponential versus factorial growth
It turns out that different algorithms react differently to having a different number of
inputs, usually corresponding to bigger problems. An exponential algorithm with n inputs
might require the computer to do 2n arithmetic operations, while a factorial algorithm
with n inputs might require a number of operations equal to the following:

As n grows, the sequences n! and 2n accelerate and grow quickly, but which one grows
faster? Does one grow faster for early n but slower for larger n? This is really not obvious at
all. Let's look at a plot of the two sequences to see how they seem to compare:

𝑛𝑛! = 1 ⋅ 2 ⋅ 3⋯𝑛𝑛

Proof by mathematical induction 43

Figure 2.15 – Plots of n! and 2n

From this plot, we see the factorial sequence surpasses the exponential sequence when n =
4, and seems to remain higher, but our plot only goes up to n = 5, so it is not obvious what
may happen as n continues to grow, so let's try to prove n! > 2n for n ≥ 4.

To set up an inductive proof, say we have the following:

And so on for p6, p7, …. Here, we do not look at p1, p2, and p3 because we see n! is smaller
than 2n for these values. We are more interested in when the comparison with n gets
larger. Keep in mind that we still have an infinite sequence of pi statements to prove, but
we simply start at p4.

For the basis step, we can easily see that 4! = (4)(3)(2)(1) = 24 and 24 = 16, so we have 4! >
24, which confirms p4 is true.

For the inductive step, we will assume pi – 1 is true for some value i ≥ 5, which means the
following:

𝑝𝑝4 ∶ 4! > 24

𝑝𝑝5 ∶ 5! > 2^5

(𝑖𝑖 − 1)! > 2𝑖𝑖−1

44 Formal Logic and Constructing Mathematical Proofs

Let's try to prove pi is true. Multiply each side of the inequality by i to get the following:

Thus, pi is true. Therefore, n! > 2n for all n ≥ 4 by mathematical induction.

A conclusion we can make is that a factorial time algorithm is slower than an exponential
time algorithm for any reasonably large problem because the number of computations
required will be higher for factorial time algorithms, in fact much higher as n grows. This
is a topic we'll study in much more detail in Chapter 7, Computational Requirements for
Algorithms.

Summary
In this chapter, we introduced the primary results of formal logic and proved logical
statements by using truth tables. We also learned about constructing mathematical
proofs using several methods, such as direct proofs, proofs by contradiction, and proofs
by mathematical induction. In addition, these different methods for constructing
mathematical proofs were accompanied by simple step-by-step examples to help you think
like a mathematician and use deductive thought, which will be helpful for the rest of the
chapters in this book.

In the next chapter, we will learn about numbers in base n and perform some arithmetic
operations with them. We will also learn about binary and hexadecimal numbers and their
uses in computer science.

𝑖𝑖(𝑖𝑖 − 1)! > 2𝑖𝑖−1 ⋅ 𝑖𝑖
 𝑖𝑖! > 2𝑖𝑖−1 ⋅ 5

 𝑖𝑖! > 2𝑖𝑖−1 ⋅ 2
 𝑖𝑖! > 2𝑖𝑖

3
Computing with
Base-n Numbers

We are all accustomed to decimal (base-10) numbers. In this chapter, we will introduce
numbers in other bases, describe arithmetic operations with those numbers, and convert
numbers from one base to another. We will then move to binary digits (base-2), which
are the foundation on which all computer operations are built, develop an approach to
efficient arithmetic with them, and look at some of the core uses of binary, including
Boolean algebra. Lastly, we will discuss hexadecimal (base-16) numbers and their uses in
computer science. We will use Python code to do some computations such as converting
decimal numbers to binary and hexadecimal and use Boolean operators to select and view
data that satisfies a certain criterion.

In this chapter, we will be covering the following topics:

• Base-n numbers

• Converting between bases

• Binary numbers and their application

• Boolean algebra

• Hexadecimal numbers and their application

46 Computing with Base-n Numbers

By the end of this chapter, you should be able to write numbers in different bases and
convert numbers from one base to another. For example, 123 is a base-10 number that
can be converted into other bases, depending on the need. You will also learn about the
importance of binary and hexadecimal number systems along with their applications in
computer science.

Important Note
Please navigate to the graphic bundle link to refer to the color images for
this chapter.

Understanding base-n numbers
In this section, we will discuss how to write numbers in different bases with the help of
some examples.

A base-n system uses n different symbols for writing numbers, as in 0, 1, 2, …, n – 1.
This n is called the radix of the numbering system. Of course, the customary base-10,
or decimal, numbers use the digits 0 through 9.

All base-n numbers make use of the positional system, like the one used by decimal
numbers, which we will discuss in the next example.

Example – Decimal numbers
Let's think about what it means to write the decimal number 3214 with the usual
positional system. It seems trivial, but it is important to realize what exactly a digit in each
position in this number represents in order to understand the commonality between the
base-10 system we all know and this new idea of a base-n system. The number is made up
of a sum of three thousands (103), two hundreds (102), one ten (101), and four ones (100),
which we can write as follows:

3214 = 3 ∙ 103 + 2 ∙ 102 + 1 ∙ 101 + 4 ∙ 100

To distinguish between numbers written in different radixes, the radix is written as
a subscript after the number. For example, 3214 in base-6 form is written as (3214)6. If no
radix is specified, it is assumed to be in decimal (base-10) form unless the context makes
some other base clear. As we can see, this number represented by this sequence of digits in
base-6 has a very different value than the same sequence of symbols in decimal.

There is an unlimited number of different base-n systems, as we could theoretically use
any real number for n, but only certain systems have been used frequently in applications.
Some of the most widely used ones are noted in the following table:

Converting between bases 47

Figure 3.1 – Common base-n numbering systems

Note that when we have bases larger than 10, we can no longer simply use a subset of
the digits 0 through 9. For example, the hexadecimal system, which is commonly used
in a number of applications in computer science, needs 16 distinct symbols, so it uses 0
through 9 and also the letters A through F. These letters represent the equivalent of the
decimal numbers 11 through 15. We will learn about the hexadecimal number system
later in this chapter.

Definition – Base-n numbers
A non-negative integer number can be represented in base-n as follows:

(dkdk-1 ∙ ∙ ∙ d1d0)n,

Here, the digits d0 through dk are not multiplied, but just written side by side.
The decimal value of this number is this:

dkn
k + dk-1n

k-1 + ∙∙∙ + d1n
1 + d0n

0

Now that we have a definition of base-n numbers and we have seen some examples,
we can think about what it means to convert between different bases.

Converting between bases
Now that we have the basic knowledge about base-n numbers, let's move on and see how
these numbers transform between different bases. We can transform numbers in any base
to base-10 and vice versa. In this section, we will show the conversion between different
bases along with examples and Python code.

48 Computing with Base-n Numbers

Converting base-n numbers to decimal numbers
Using the definition of base-n numbers given previously, we can convert the following
numbers to base-10, or decimal, form. Several examples follow:

• (a)n = a ∙ n0 = a

• (ab)n = a ∙ n1 + b ∙ n0 = an + b

• (abc)n = a ∙ n2 + b ∙ n1 + c ∙ n0 = an2 + bn + c

• (abcd)n = a ∙ n3 + b ∙ n2 + c ∙ n1 + d ∙ n0 = an3 + bn2 + cn + d

We can apply this according to the number of digits we have.

Example – Decimal value of a base-6 number
Let's convert the number (3214)6 into decimal form for this example:

(3214)6 = 3 ∙ 63 + 2 ∙ 62 + 1 ∙ 61 + 4 ∙ 60 = 648 + 72 + 6 + 4 = 730

This is far from the decimal number 3214. We can see that the same number (here 3214)
has a different value based on the base it is written in. The most-used base is base-10.

Base-n to decimal conversion
To convert a decimal number to a certain base n, we repeatedly divide the number at hand
by n and keep track of the remainders as we proceed with the division. Let's illustrate this
procedure with the help of an example.

Example – Decimal to base-2 (binary) conversion
Let's convert 357 into binary form.

We repeatedly divide 357 by 2 and keep track of the remainders. First, we divide 357 by 2
to get 178 with a remainder of 1, which we write on the right side of the following table.
In the next row, we divide 178 by 2 to get 89 with no remainder (0). We continue this in
each row until we are unable to do it anymore:

Converting between bases 49

Figure 3.2 – Converting a decimal number to binary

Now that we have the divisions performed and the remainders noted down, we can
follow the direction of the arrows to get our binary number, that is, (101100101)2. This
method can be used to convert a decimal number to any non-decimal base (base-2 for
this example).

Now that we know how to do the conversion, let's investigate why this method works. For
our current example, in order to convert into base-2, we repeatedly divide by 2, and so
the remainders can only be 0 (for even numbers) or 1 (for odd numbers). Hence, a base-2
number only uses 0 and 1 for its representation.

The same goes for numbers represented in other bases. For example, to convert a decimal
number to base-7, we would repeatedly divide by 7, and so the possible remainders vary
from 0 through 6, which are the digits for representing a base-7 number.

Let's do some more examples to make this clearer.

50 Computing with Base-n Numbers

Example – Decimal to binary and hexadecimal
conversions in Python
Let's use Python to convert a decimal number to binary and hexadecimal. When
you run the code, it will prompt you to enter a number of your choice, which will then
be converted into both binary and hexadecimal numbers:

TypeConversion from decimal with base 10
to hexadecimal form with base 16
to binary form with the base 2

Taking input from user - an integer with base 10
number = int(input("Enter a number with base 10\n"))
Converting the decimal number input by user to Hexadecimal
print("Hexadecimal form of " + str(number) + " is " +
 hex(number).lstrip("0x").rstrip("L"))
Converting the decimal number input by user to Binary
print("Binary form of " + str(number) + " is " + bin(number).
 lstrip("0b").rstrip("L"))

The output, if the user inputs 12345, is as follows:

Enter a number with base 10
123456
Hexadecimal form of 123456 is 1e240
Binary form of 123456 is 11110001001000000

From the preceding example, we can see that the hexadecimal number system is shorter
and therefore easier to work with as compared to the binary number system.

In this section, we learned about different number systems and how to convert numbers
from one base to another.

Next, we will continue to discuss a few applications in computer science of binary (base-2)
numbers and hexadecimal (base-16) numbers.

Binary numbers and their applications 51

Binary numbers and their applications
In this section, we will learn about the binary number system in detail along with its
applications and importance in computer science. In particular, we will consider a brief
history of binary, provide an explanation as to why they are so foundational to how
computers work, and examine the link between binary numbers and Boolean algebra and
its use in databases.

The modern binary number system, which is the basis for binary code, was invented by
Gottfried Leibniz in 1689, which he described in his article Explication de l'Arithmétique
Binaire (translated as "explanation of binary arithmetic").

Binary numbers are represented in a base-2 system. The only digits used to represent
a binary number are "0" and "1." Each digit is called a bit. A binary string of eight bits can
represent any of 256 (28) possible values.

A bit string is not the only kind of binary code; other systems that allow only two choices,
such as ON/OFF or True/False, can be binary in nature. One such example is Braille,
developed by Louis Braille. Braille is widely used by the blind to read and write by touch.
This system consists of grids of six dots each, three per column, in which each dot has
two states: raised or not raised. Different combinations of these raised or flattened dots
represent different letters, numbers, punctuation, and so on. Here are some examples of
how alphabets are written in Braille by making use of raised and flattened dots:

Figure 3.3 – Alphabets in Braille

The importance of the binary number system to the development of computers goes
way back to 1946, when the first electric general-purpose digital computer – Electronic
Numerical Integrator and Computer (ENIAC) – was built at the University of
Pennsylvania.

The brain of a computer (the CPU) has many circuits that are made up of a large number
of transistors. Transistors are analogous to a "switch" that can be turned to the ON
or OFF states based on the signal it receives. The binary digits 0 and 1 reflect the OFF
and ON states of a transistor. The user provides the computer with a set of instructions
for the computer to do a task. These instructions/commands are translated (by a compiler)
into binary code for the computer to understand and execute. All the data, information,
music, pictures, and so on are processed and stored in binary form by the computer.

52 Computing with Base-n Numbers

As mentioned before, a 0 or a 1 is called a bit. A group of eight bits is called a byte.
Let's try representing multiples of bytes in the decimal and binary systems:

Figure 3.4 – Multiples of bytes and their value in metric and binary systems

The binary interpretation of metric prefixes is used by most operating systems.

Boolean algebra
In this section, we will learn about Boolean algebra in detail, along with its applications,
such as logic gates. Boolean operators are very useful in filtering out and viewing data that
meets certain criterion; this will be illustrated by using Python to solve an example.

George Boole introduced the idea of Boolean algebra in his book titled The Mathematical
Analysis of Logic in 1847. Boolean algebra is a subset of algebra in which values of
variables are either "True" (1) or "False" (0). The main operations of Boolean algebra are
detailed here.

The AND operator
This operator states that for an output to occur, two or more events must happen
simultaneously. However, the order in which the individual events occur is irrelevant.
We use & to represent the AND operator. Hence, we can say that A & B = B & A, which
means it agrees with commutative law.

Boolean algebra has applications in electronics. Let's try to understand the AND operator
by making use of a simple electric circuit comprising a lamp, a battery, and two switches
(A and B), as shown in the following figure:

Binary numbers and their applications 53

Figure 3.5 – A circuit showing an AND operator

For the lamp to glow, both switches A and B must be in the "ON" (1) position. If either of
the switches is ON with the other in the OFF position, then the circuit is incomplete, and
the lamp does not glow. The following figure shows the application of Boolean algebra of 0
and 1 to electronic hardware comprising logic gates connected to form a circuit diagram:

Figure 3.6 – AND gates

If A and B are switches, then both must be closed (=1) for the circuit to be closed and the
current to flow. If either of the switches is open, then the circuit is open and the current
does not flow.

Mathematically, it can be written as A ^ B. If A=1 and B=1, then A ^ B =1, otherwise A ^
B = 0. This can be represented by the following figure:

Figure 3.7 – The AND operator

Let's learn about the OR operator in the next section.

54 Computing with Base-n Numbers

The OR operator
This operator states that for an output to occur, either of two conditions needs to be true.
Let's try to understand this by making use of electric circuits. In Figure 3.8, we can see that
the circuit will be closed, and the lamp will glow if either switch A is ON or switch B is
ON, or both are ON:

Figure 3.8 – A circuit showing the OR operator

Mathematically, this can be written as A V B:

If A=1, B=1, then A V B =1.

If A=0, B=0, then A V B =0.

If A=1, B=0, then A V B =1.

If A=0, B=1, then A V B =1.
This can be represented by the following figure:

Figure 3.9 – The OR operator

Binary numbers and their applications 55

The AND and OR operators can be summarized by making use of truth tables as shown in
Figure 3.10. Here, 0 = False/OFF and 1 = True/ON:

Figure 3.10 – A truth table for the AND and OR operators

Now that we know how the OR operator works, we will learn about the NOT operator in
the next section.

The NOT operator
This operator is used to reverse the truth value of an entire expression, from False to True
or from True to False, depending on the situation.

Let's say that a university wants to send a warning email to students whose GPA is less
than 2.0. This statement can be reframed in another way – send a warning email to
students whose GPA is not greater than 2.0.

This operator can be represented by ¬A:

Figure 3.11 – The NOT operator

56 Computing with Base-n Numbers

The NOT operator is represented in a circuit diagram/logic gate as shown in the following
figure:

Figure 3.12 – The NOT operator

The NOT operator can be summarized by making use of a truth table as shown in
Figure 3.12. Here, 0 = False/OFF and 1 = True/ON:

Figure 3.13 – A truth table for the NOT operator

Let's see how we can use all this theory about Boolean operators in an example.

Example – Netflix users
Boolean operators can be used to select and view data that satisfies a certain criterion.
Let's use the following table to show how our operators can be used in Python. Figure 3.13
shows the customer addresses for 10 customers of Netflix:

Figure 3.14 – Netflix customer dataset

Binary numbers and their applications 57

For this example, we will be using a Python library called pandas. It is a fast, flexible, and
easy-to-use open source data analysis and manipulation tool that is built on the top of the
Python programming language.

Important note
Installing Python packages, such as pandas in this instance, is an important
skill that everyone needs. Here's a link with detailed instructions regarding how
to install different packages in Python: https://packaging.python.
org/tutorials/installing-packages/.

In addition, we will need to import our data to Python in order to use the code in this
example. The data is stored in a Comma-Separated Value (CSV) file provided on GitHub
called CustomerList.csv, which is available in the GitHub repository for this book.
Be sure to download it and store it in the same directory where you store your code.

We will do the following for this example:

• Use the AND operator to view the customers who live in the USA (AND) in the
state of Georgia.

• Use the OR operator to view the customers who live either live in the USA or in the
state of Ontario.

• Use the NOT operator to view the customers who do not live in the USA.

The Python code is as follows:

Import packages with the functions we need
import pandas as pd

Import the file you are trying to work with
customer_df = pd.read_csv("CustomerList.csv")

Using AND operator
print("Example for AND operator")
print(customer_df.loc[(customer_df['Country'] == 'USA') &
 (customer_df['State'] == 'Georgia')])

Using OR operator
print("Example for OR operator")
print(customer_df.loc[(customer_df['Country'] == 'USA') |
 (customer_df['State'] == 'Ontario')])

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/

58 Computing with Base-n Numbers

Using NOT operator
print("Example for NOT operator")
print(customer_df.loc[(customer_df['Country'] != 'USA')])

The output is as follows:

Example for AND operator
 CustomerID Country State City Zip Code
0 1 USA Georgia Atlanta 30332
1 2 USA Georgia Atlanta 30331
Example for OR operator
 CustomerID Country State City Zip Code
0 1 USA Georgia Atlanta 30332
1 2 USA Georgia Atlanta 30331
2 3 USA Florida Melbourne 30912
3 4 USA Florida Tampa 30123
9 10 Canada Ontario Toronto M4B 1B3
Example for NOT operator
 CustomerID Country State City Zip Code
4 5 India Karnataka Bangalore 560001
5 6 India Maharashtra Mumbai 578234
6 7 India Karnataka Hubli 569823
7 8 India Maharashtra Mumbai 578234
8 9 Germany Bavaria Munich 80331
9 10 Canada Ontario Toronto M4B 1B3

In the preceding example, we were able to display records that match a certain criterion –
the first task was to view the customers that reside in the USA and in the state of Georgia.
Records matching both these requirements were then displayed. Similarly, for the second
part of the example, we were able to view the records of customers who either live in the
USA or in the state of Ontario (in Canada). We used the OR operator to achieve this goal.
Lastly, we used the NOT operator to view all the records for customers that do not reside
in the USA; all the results except for the ones who reside in the USA were displayed.

In this section, we learned about different kinds of logical operators and how they can be
used to search and view results that match a certain criterion. In the next section, we will
be discussing another kind of number system, called the hexadecimal number system, and
learning about its application.

Hexadecimal numbers and their application 59

Hexadecimal numbers and their application
In this section, we will learn about the hexadecimal number system and its application.
We use hexadecimal numbers in our day-to-day lives without realizing, such as for the
MAC address of your phone or computer.

Hexadecimal numbers are base-16 numbers. They can be represented by using 10 digits (0
to 9) and 6 letters (A = 10, B = 11, C = 12, D = 13, E = 14, F = 15).

Let's look at some conversions between the decimal and hexadecimal number systems:

Figure 3.15 – Counting in hexadecimal

Just like decimal numbers, hexadecimal numbers also have place values:

(100)16 = (1 ∙ 162) + (0 ∙ 161) + (0 ∙ 160) = 256

60 Computing with Base-n Numbers

Computer programmers use hexadecimal numbers to simplify the binary number system.
We know that 24 = 16, so we know there is a linear relationship between 2 and 16, which
implies that four binary digits would be equivalent to one hexadecimal digit. In other
words, since binary numbers can be represented by two digits (0 or 1) and hexadecimal
numbers can be represented by 16 digits and letters, and we can write 16 as a power of
2 (24), four binary digits would be equivalent to one hexadecimal digit. While computers
use the binary numbering system, humans use the hexadecimal system to make things
easier to understand.

Example – Defining locations in computer memory
In the previous section, we learned that 1 byte = 8 bits. Hexadecimal numbers can
characterize every byte as two hexadecimal digits as compared to eight digits when the
binary number system is used.

Let's work through an example to better understand how memory locations are defined
on a computer, how different variables are stored in different memory locations, and how
the values assigned to variables (and, hence, the memory locations) can be changed. We
will do the following for this example:

• We will define a peanut_butter variable and assign the value 6 to it. We will
then print the memory location of where this variable is stored.

• We will define another variable, sandwich, and assign it the same value as
peanut_butter. When we print the memory location of this variable, we will
see that it is the same as for peanut_butter. This is because we assigned the
same value (6) to both our variables, and so they were stored in the same memory
location.

• We will move on to assign 7 to the sandwich variable and then set both the
peanut_butter and sandwich variables to each other. We can check that they
both return the same memory location.

• We'll then set sandwich to 10; this changes the value (and memory location)
of the sandwich variable only, and nothing changes for the peanut_butter
variable.

Let's see how to implement this in Python:

#Variable 1: peanut_butter
peanut_butter = 6
print("The memory location of variable peanut_butter is:
 ",id(peanut_butter))

#Variable 2: sandwich

Hexadecimal numbers and their application 61

sandwich = 6
print("The memory location of variable sandwich is:
 ",id(sandwich))

print(" We can see that the memory location of both the
 variables is the same because they were assigned the same
 value")

#Setting value of sandwich variable to a new number
sandwich = 7

#Setting both the variables equal to each other:
peanut_butter = sandwich
print("After setting the values of both variables equal to each
 other, we have: ")

print("The value of variable sandwich is now set to:
 ",sandwich)
print("The value of variable peanut_butter is now set to:
 ",peanut_butter)

print("The value of sandwich variable was changed to 10, let's
 see whether it affects the value of peanut_butter")
#Setting value of sandwich variable to a new number
sandwich = 10

print("The value of variable peanut_butter: " ,peanut_butter)
print("The value of peanut_butter did NOT change even though we
 changed the value of sandwich")
print("The memory location of variable peanut_butter is:
 ",id(peanut_butter))

The output of the code is as follows:

The memory location of variable peanut_butter is: 2077386960
The memory location of variable sandwich is: 2077386960
 We can see that the memory location of both the variables is
 the same because they were assigned the same value
After setting the values of both variables equal to each other,
we have:
The value of variable sandwich is now set to: 7
The value of variable peanut_butter is now set to: 7

62 Computing with Base-n Numbers

The value of variable was changed to 10, let's see whether it
 affects the value of peanut_butter
The value of variable peanut_butter: 7
The value of peanut_butter did NOT change even though we
 changed the value of sandwich
The memory location of variable peanut_butter is: 2077386976

Now that we know how hexadecimal numbers are used to define memory locations,
let's move on to see some more examples of how they are useful.

Example – Displaying error messages
Hexadecimal numbers represent the memory location of errors, making it easier for the
user to find and fix them. A binary representation, which would be the most natural
representation due to the way a CPU works, would include four times as many digits,
which would be difficult for a human to read and interpret.

Example – Media Access Control (MAC) addresses
MAC addresses are unique identifiers assigned to the Network Interface Card (NIC) of
any computer. An NIC is required in order to connect to other computers in a network.
It is useful for uniquely identifying a computer among other computers. The format of
a MAC address is either AA:AA:AA:BB:BB:BB or AAAA-AABB-BBBB:

Figure 3.16 – A MAC address

We can easily write some Python code to find the MAC address of the device on which
it is running by writing the following code in the terminal:

import uuid

address using uuid and getnode() function
making use of hexadecimal number system
print (hex(uuid.getnode()))

Hexadecimal numbers and their application 63

It has the following output:

0xf40669da5f06

Now that we know how to find the MAC address of our computers, let's move on to see
how the hexadecimal number system can be used to define colors.

Example – Defining colors on the web
The primary colors – red (R), green (G), and blue (B) – are represented by two
hexadecimal digits each. This can be written as #RRGGBB. Primary colors cannot be
created by mixing other colors.

The values of red, green, and blue can be set between 0 and 255 to generate other colors.
Figure 3.17 lists all the commonly used colors:

Figure 3.17 – For each RGB value, we have written the value in decimal and the two-digit
hex number in parentheses in columns 2-4

64 Computing with Base-n Numbers

The advantages of hexadecimal number system:

• It's a concise number system, so we can store more information by using less
memory space.

• It is more human-friendly because it allows the grouping of binary numbers.

In this section, we learned about hexadecimal numbers and some of their applications,
which included defining locations in computer memory, MAC addresses for devices,
displaying error messages, and defining colors on a web page.

Summary
In this chapter, we learned about numbers in different bases (decimal, binary,
hexadecimal) and how we can convert between bases. Binary numbers are a base-2
number system, whereas decimal numbers are base-10 and hexadecimal numbers are
base-16, respectively. We also learned about one very crucial application of the binary
number system – Boolean algebra and Boolean operators.

In the next chapter, we will be learning about combinatorics, which includes the study of
permutations and combinations that will enable you to calculate the amount of memory
required to store certain kinds of data. In addition, we will learn about hashing and the
efficacy of brute force algorithms.

4
Combinatorics

Using SciPy
This chapter is about counting (or combinatorics), which seems simple, but rapidly gains
complexity when counting the number of ways to combine, order, or select various finite
sets. This includes the study of permutations and combinations, which can be applied to
determining the memory required to store various types of data.

We will apply these ideas to measure the efficacy of brute-force algorithms applied to
cryptography and the traveling salesman problem.

In this chapter, we will cover the following topics:

• The fundamental counting rule

• Counting permutations and combinations of objects

• Applications to memory allocation

• Efficacy of brute-force algorithms

By the end of the chapter, you will be able to count various mathematical structures,
distinguish between combinations and permutations, and be able to count them. You will
also be able to apply these ideas to practical problems in memory allocation and measure
the effectiveness of brute-force algorithms in code-breaking in cryptology, the traveling
salesman problem, and beyond. The SciPy Python library as well as the standard Python
math library will be used in this chapter.

66 Combinatorics Using SciPy

Important Note
Please navigate to the graphic bundle link to refer to the color images for
this chapter.

The fundamental counting rule
This section is devoted to counting the number of possible ways to select several objects,
each from a set of distinct elements. We will first focus on the case of just two sets before
extending it to an arbitrary number of sets.

Definition – the Cartesian product
The set of ordered pairs A × B = {(a, b) : a ∈ A, b ∈ B}, with component a as an element
from set A and the second component b from set B, is called the Cartesian product of sets
A and B:

Figure 4.1 – If A = {a1, a2} and B = {b1, b2}, then A × B consists of the ordered pairs in this table

This chapter is all about counting the number of elements in sets. Recall from Chapter 1,
Key Concepts, Notation, Set Theory, Relations, and Functions that the cardinality of a set
is the number of elements in the set. Cartesian products are interesting things to
count because we can count the number of ways of choosing one element from set A
and another element from set B, so our first counting rule will find the cardinality of
a Cartesian product.

Theorem – the cardinality of Cartesian products of
finite sets
If A and B are finite sets, then |A × B| = |A| |B|.

Proof: Assume |A| = n. If B is the empty set, then |A × B| = 0. If A = {a1, …, an} and
B = {b1}, then the elements of A × B are clearly (a1, b1), ..., (an, b1) so that |A × B| = |A| |B| =
n 1 = n.

Suppose B = {b1, ..., b
m}, then we can break A × B down into the disjoint A × (B – {b1}) and

A × {b1} sets, so we have the following from the previous step:

|𝐴𝐴 × 𝐵𝐵| = |𝐴𝐴 × (𝐵𝐵 − {𝑏𝑏1})| + |𝐴𝐴 × {𝑏𝑏1}| = |𝐴𝐴 × (𝐵𝐵 − {𝑏𝑏1})| + 𝑛𝑛

The fundamental counting rule 67

Repeat this process, deleting one element from B until B runs out of elements (m times)
and we eventually have the following:

|𝐴𝐴 × 𝐵𝐵| = |𝐴𝐴 × ∅| + |𝐴𝐴| + |𝐴𝐴| +⋯+ |𝐴𝐴|⏟
𝑛𝑛 times

= 0 + 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛 = |𝐴𝐴| · |𝐵𝐵|

Practically, this result says that if we must choose a pair of elements consisting of one item
from a set of m distinct elements and one from another set of n distinct elements, there
are mn unique ways to do it. This idea easily extends to situations where there are more
than just two sets. First, we extend the definition of the Cartesian product to more sets,
which leads to the fundamental counting rule, the key to most of the remainder of our
upcoming counting rules.

Definition – the Cartesian product (for n sets)
The set A1 × A2 × … × An = {(a1, a2, …, an) : a1 ∈ A1, a2 ∈ A2, …, an ∈ An} of ordered n tuples,
where the ith component, ai, comes from set Ai for each instance of i = 1, 2, …, n.

Theorem – the fundamental counting rule
If A1, A2, …, An are finite sets, then |A1 × A2 × … × An| = |A1| . |A2|…|An|.

Proof: Assume |Ai| = mi < ∞ for each instance of i = 1, …, n. Apply the previous result
for calculating a Cartesian product to A1 × A2 to find |A1 × A2| = |A1| . |A2| = m1m2. Then,
choose one ordered pair from A1 × A2 and pair it with one element from A3. Then, the
same result implies the following:

|(𝐴𝐴1 × 𝐴𝐴2) × 𝐴𝐴3| = |𝐴𝐴1 × 𝐴𝐴2| · |𝐴𝐴3| = |𝐴𝐴1| · |𝐴𝐴2| · |𝐴𝐴3| = 𝑚𝑚1𝑚𝑚2𝑚𝑚3

This is the number of elements in A1 × A2 × A3. Continuing this process, we can include
one more set, Ai, repeatedly until we get to An and we will have the result of the theorem.

In other words, if we need to select n elements, each from sets of m1, m2, …, mn distinct
elements, there are m1m2…mn unique ways to do it.

Example – bytes
A byte is a unit of digital information typically consisting of eight bits, which are binary
digits: ones and zeroes. We can use the fundamental counting rule to calculate the number
of possible bytes that could be constructed. Each of the eight digits may be filled with an
element of the set {0,1}, which has a cardinality of 2; so, we have the following:

|{all possible bytes}| = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 28 = 256

68 Combinatorics Using SciPy

Therefore, if we suppose each possible byte represents some particular information, each
one can carry one of 256 possible pieces of information.

Another option to determine the figure in the preceding example would be to list all
the possible bytes and count them: 00000000, 00000001, 00000010, 00000011, ...; but as
you can already tell, this would take quite some time! The takeaway from this remark is
that while there are typically "brute-force" approaches to count complex things, using
combinatorial rules, including the preceding one, is far more practical.

Example – colors on computers
In many computing applications, colors are created by mixing the colors red, green,
and blue (RGB). In particular, you can specify the intensity of each color in a mixture.
A common approach used in HTML and CSS, among other technologies, is to encode the
intensity of each color as 1 byte of information.

Let's count how many unique colors this approach can create. Since we have 3 bytes, and
each byte can take one of 256 forms, we can see that there are 256 256 256 = 16,777,216
unique combinations of intensities of red, green, and blue, and so this approach can create
over 16 million colors!

As we have seen, the fundamental counting rule directly allows us to compute some
quantities of interest, such as the information that can be communicated with bytes and
the number of colors that certain web languages can display. Beyond that, it is a key result
that will lead to formulas for computing other sorts of groupings of objects: permutations
and combinations.

Counting permutations and combinations
of objects
This section is dedicated to counting orderings, or permutations, of objects in a set, as well
as subsets of specified cardinalities, or combinations, of elements of some wider set.

Definition – permutation
A permutation is a rearrangement of the elements of a set.

Example – permutations of a simple set
For the set {1, 2, 3}, the set of all permutations is {123, 132, 213, 231, 312, 321}, so there
are six permutations of this set. Certainly, there is nothing special about elements 1, 2, and
3. Any set of three distinct elements would have the same number of permutations.

Counting permutations and combinations of objects 69

As you might suspect, however, listing permutations becomes more and more
cumbersome for larger sets, so we need a rule for counting them more efficiently.

Theorem – permutations of a set
The number of permutations of a set of size n is n! = n(n – 1)(n – 2)…(2)(1), which is
pronounced n factorial.

Proof: In the first position of the permutation set, there may be any of the n objects. If
we have selected one, that leaves n – 1 remaining objects for the second position, and so
on. According to the fundamental counting rule, there are n(n – 1)(n – 2)…(2)(1) = n!
possible permutations.

Notice that in the previous example, this theorem tells us the number of permutations of
A = {1, 2, 3} is |A|! = 3! = 3·2·1 = 6, the same result we found from listing all the
permutations.

Important Note
Note that 0! is defined to be 1.

Example – playlists
Suppose we have a playlist of 20 songs that we will play in a random order (without
repeating). According to the previous theorem, the number of possible orders,
or permutations, is 20! ≈ 2.43 × 1018, a shockingly high number!

Growth of factorials
Notice in the following table that factorials grow extremely quickly:

Figure 4.2 – A table of the first 10 factorials. As we see, a set of 10 elements
has over 3 million permutations!

70 Combinatorics Using SciPy

The number of permutations of just 10 elements is over 3 million. By the time we reach
20 elements, as in the previous example, the number of permutations is 20! ≈ 2.43 × 1018,
over 2 quintillion!

Many computational tools, such as calculators and programming languages, cannot (by
default) calculate permutations if the number of elements gets too high, but the factorial
function from the math module in Python (math) does not experience much trouble, as
it can calculate large factorials efficiently using some mathematical tricks, as seen in the
following code:

import math
print(math.factorial(20))
print(math.factorial(100))

The resulting output is as follows:

2432902008176640000

933262154439441526816992388562667004907159682643816214685929638
952175999932299156089414639761565182862536979208272237582511852
10916864000000000000000000000000

Important Note
The math module will be used frequently in this book. Check out the official
documentation for the math module at https://docs.python.
org/3/library/math.html for more details.

Sometimes, we may wish to count a slightly different type of permutation; for example, in
our example with playlists, suppose we want to randomly play only half the playlist of 20
songs. Then, how many distinct permutations of a subset of 10 of the 20 songs are there?
The next result allows us how to easily calculate that number.

Theorem – k-permutations of a set
The number of permutations of k out of n distinct elements from a set, or k-permutations,
is as follows:

𝑃𝑃𝑘𝑘 =
𝑛𝑛!

(𝑛𝑛 − 𝑘𝑘)!

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html

Counting permutations and combinations of objects 71

Proof: If there are k positions to fill from n options, the first position may be filled by any
of the n elements, the second may be filled by any of the remaining n – 1 elements, and
so on down to the last position being filled by any of the remaining n – k + 1 elements.
So, according to the fundamental counting rule, we have n(n – 1)(n – 2)···(n – k + 1)
possibilities, but this can be manipulated as follows:

This gives a fraction with n! as the numerator and (n – k)! as the denominator, or
𝑛𝑛!

(𝑛𝑛 − 𝑘𝑘)!

This theorem works for all non-negative integers, k ≤ n, so we see that the previous
theorem is just a special case of this more general theorem where k = n.

Returning to our playlist, then, the number of 10-permutations of the 20-song list can be
computed with Python as follows:

import math
print(math.factorial(20)/math.factorial(20-10))

This outputs the following:

670442572800.0

Now, we can count the number of permutations or orderings of sets or their subsets.
Another sort of grouping of elements is a combination, which we will discuss next.

Definition – combination
A combination is a selection of some elements from a set.

The main difference between a combination and a permutation of some k out of
n elements is that different orderings of the same k elements represent multiple
permutations, but only one combination.

Example – combinations versus permutation for
a simple set
Consider the set A = {1, 2, 3}. The two-element permutations of A are {12, 21, 13, 31, 23,
32}, but the set of two-element combinations of A are {12, 13, 23}. Since the order is not
important for combinations, we have fewer of them. The next result shows just how many
we have.

𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2)…(𝑛𝑛 − 𝑘𝑘 + 1) = 𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2)… (𝑛𝑛 − 𝑘𝑘 + 1).
(𝑛𝑛 − 1)(𝑛𝑛 − 𝑘𝑘 − 1)… (2)(2)
(𝑛𝑛 − 𝑘𝑘)(𝑛𝑛 − 𝑘𝑘 − 1)…(2)(1)

72 Combinatorics Using SciPy

Theorem – combinations of a set
The number of combinations of k out of n elements of a set, or k-combinations, is

𝐶𝐶𝑘𝑘 = (𝑛𝑛𝑘𝑘) =
𝑛𝑛!

𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)! .

Proof: The number of permutations of k out of n elements is nPk by the theorem on
k-permutations. For each fixed k elements, there are k! different permutations by the first
theorem on permutations, so we simply need to divide nPk by k! to find the number of
combinations of k out of n elements, since the order of the elements does not matter in
combinations. So, we have the following:

𝑃𝑃𝑘𝑘
𝑘𝑘! =

𝑛𝑛!
𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)! = (𝑛𝑛𝑘𝑘)

Binomial coefficients
(𝑛𝑛𝑘𝑘) is called a binomial coefficient because of the binomial theorem from algebra, which

gives the expansion of a binomial raised to the power of a non-negative integer n, as
follows:

(𝑥𝑥 + 𝑦𝑦)𝑛𝑛 = ∑ (𝑛𝑛
𝑘𝑘)

𝑛𝑛

𝑘𝑘=0
𝑥𝑥𝑘𝑘𝑦𝑦𝑛𝑛−𝑘𝑘 = (𝑛𝑛

0) 𝑥𝑥0𝑦𝑦𝑛𝑛 + (𝑛𝑛
0) 𝑥𝑥1𝑦𝑦𝑛𝑛−1 + ⋯ + (𝑛𝑛

𝑛𝑛) 𝑥𝑥𝑛𝑛𝑦𝑦0

Example – teambuilding
Suppose there are 20 software engineers working in an office. Their supervisor will choose
a team of four engineers to work on a new project. We would like to count the number of
possible teams that could be selected. Note that the order in which the team members are
selected is unimportant to counting the number of teams—for example, the team of Katie,
Pranav, Sanjay, and Li is the same as the team of Pranav, Li, Sanjay, and Katie. Therefore,
the correct structures we are counting are combinations rather than permutations.

Therefore, the number of possible teams is (204) , which would be cumbersome to calculate

by hand, so we can use a tool such as Python. We could use the factorial function from
before, along with the definition of binomial coefficients, but there is a highly optimized
implementation in the SciPy package, specifically in its special functions, called binom:

using the factorial function
import math
print(math.factorial(20) / math.factorial(4) / math.

Counting permutations and combinations of objects 73

 factorial(20-4))

import the special functions from sciPy
import scipy.special
print(scipy.special.binom(20,4))

The output is shown here:

4845
4845.0

Therefore, there are 4,845 distinct teams that could be chosen for the project. Note that
both of the code examples work, but scipy.special.binom is preferable because it is
optimized.

Important Note
You can find the official documentation for the popular SciPy library for
Python at https://docs.scipy.org/doc/scipy/reference/.

Example – combinations of balls
Consider a box containing six red balls and five yellow balls and assume five balls are to be
chosen randomly. Let's find the number of combinations where there are exactly three red
balls in the five chosen.

First, we have to choose three out of the six red balls, so there are (
6
3) = 20 ways of doing

that. Secondly, we must choose two of the five yellow balls, so there are (
5
2) = 10 ways of

doing that. We need to choose one of the 20 ways of getting the correct number of red
balls and one of the 10 ways of selecting the correct number of yellow balls, so according
to the fundamental counting rule, there are 20 10 = 200 ways that both of these can
occur.

As we see, to solve more complicated problems, several of the combinatorial rules we have
established may be needed.

In the remainder of the chapter, we will discuss some practical applications of
combinatorics in computer and data science.

https://docs.scipy.org/doc/scipy/reference/

74 Combinatorics Using SciPy

Applications to memory allocation
One area where combinatorics can come into play is in determining how much memory
an algorithm needs to complete a certain task. It is frequently useful to know this before
we run some code. In most programming languages, when arrays are created, they are
given a static size that cannot be changed. Therefore, it is faster or more convenient to
change an existing value in an array than to change the size of an array.

So, developers often pre-allocate the memory by creating an array of the maximum
size we will need for the whole course of the algorithm, either filled with 0s or empty,
depending on the language. This is not a problem with small amounts of data, but
when the program needs to process exponentially large amounts of data, this can be
very wasteful. Understanding memory usage is also important to avoid certain negative
consequences: we may use up so many resources on the device that it cannot complete
its other tasks, it may crash, or it may begin reading and writing data to hard drives
instead of the much faster RAM.

Example – pre-allocating memory
Suppose we wish to create a large list of 1,000,000 numbers. The simplest way is to just run
a loop, adding one element at a time to the vector:

import time
number = 1000000

Check the current time
startTime = time.time()

Create an empty list
list = []

Add items to the list one by one
for counter in range(number):
 list.append(counter)

Display the run time
print(time.time() - startTime)

It returns the following:

0.584686279296875

Applications to memory allocation 75

Therefore, this code runs in about 0.5847 seconds, which seems fast, but is not optimal.

Important Note
The Python time library allows you to measure the runtime of some code.
The time.time() command checks the current time, so if you save this
value at the beginning, you can measure the time elapsed by subtracting that
from a new time.time() command at the end.

The runtime will depend on the computing device, so you may find a different
amount of time than the preceding example.

Suppose we pre-allocate a list of length 1,000,000 with the following code before filling it in:

import time
number = 1000000

Check the current time
startTime = time.time()

Create a list of 1000000 zeros
list = [None]*number

Add items to the list one by one
for counter in range(number):
 list[counter] = counter

Display the run time
print(time.time() - startTime)

We get an output as follows:

0.44769930839538574

The runtime here is only 0.4477 seconds, a time saving of 23%. Here, we readily see the
speed advantage of pre-allocation, at least for large lists in Python. Sure, saving 0.14
seconds is inconsequential on a small scale, but if you use this method in an algorithm
that will run thousands or millions of times in some software, it can make a huge
difference.

76 Combinatorics Using SciPy

While each requires a loop of 1,000,000 iterations, Python must do more work in the
first method as each iteration requires more operations to be done—according to the
fundamental counting rule, each extra operation turns into 1 million more operations
upon completing all million iterations—so it takes more time, even though the two
approaches both accomplish the same goal. Furthermore, most languages are even less
efficient than Python at repeated appending elements to lists.

It should be mentioned that while a list of size 1,000,000 may seem large, this not at all an
uncommon size for the objects we may analyze. For example, a typical photo taken with
a modern smartphone may include more than 10 million pixels, each of which would have
three numbers associated with it (RGB value), so a list of 30 million numbers would be
needed to represent a single picture file. As you might imagine, a video file may include
thousands of pictures, leading to enormous list sizes.

In the next section, we will learn about brute-force algorithms and go through some
examples, such as the Caesar cipher and the traveling salesman problem.

Efficacy of brute-force algorithms
A combination lock requires you to input three numbers from, say, 0 to 9 to open the
lock. One approach to open it if you forget the password is to try (0, 0, 0), then (0, 0, 1),
then (0, 0, 2), and so on. This method is guaranteed to succeed if we have enough patience
to test all permutations of 0 through 9 for each of the three numbers. This is a brute-force
algorithm: a trial-and-error approach to solving a problem where you simply guess the
answer over and over until you get it right. Of course, this is very tedious for a combination
lock, but brute-force approaches are actually sometimes practical, especially when using
computers.

Example – Caesar cipher
Roman emperor and general Julius Caesar is said to have been one of the earliest users of
encryption in the form of coded messages. Now called the Caesar cipher, his method was
to write the message and then shift the alphabet by some specified number of letters. For
example, he might choose to shift the alphabet by 4 letters. Then, A is replaced by E, B is
replaced by F, and so on. When we reach V, it becomes Z. After that, we go back to the
beginning so that W becomes an A, X becomes a B, and so on, as we see here:

Figure 4.3 – The plaintext characters and corresponding ciphertext characters

Efficacy of brute-force algorithms 77

One approach to breaking some encryption is brute force. If we know it was a Caesar
cipher, then there are only 25 possible shifts, so we can just test them all until we find one
that seems right. We will do this in the following code:

Intercepted message
codedMessage = 'nzohfu gur rarzl ng avtug'

We will shift by 0, shift by 1, shift by 2, ... and print the
 # results
for counter in range(26):
 # Start with no guess
 guessedMessage = ''

 # Loop through each letter in the coded message
 for x in codedMessage:

 # If x is not a space
 if x != ' ':

 # Shift the letter forward by counter
 if ord(x)+counter <= 122:
 x = chr(ord(x)+counter)

 # Subtract 26 if we go beyond z
 else:
 x = chr(ord(x)+counter-26)

 # Build a guess for the message one letter at a time
 guessedMessage = guessedMessage + x

 # Print the counter (the shift) and the message
 print(counter, guessedMessage)

A few lines of the output are as follows:

10 xjyrpe qeb bkbjv xq kfdeq
11 ykzsqf rfc clckw yr lgefr
12 zlatrg sgd dmdlx zs mhfgs
13 ambush the enemy at night
14 bncvti uif fofnz bu ojhiu

We see that the cipher must have shifted the alphabet by 13, as we discover by inspecting
each of the possible adjusted alphabets.

78 Combinatorics Using SciPy

Moreover, this example shows something about when brute-force algorithms are useful.
For brute-force algorithms to thrive, there are two main requirements:

• The set of possible solutions, or solution space, is sufficiently small.

• It must be possible to determine the correct solution given output from each
possible solution.

If we fail condition 1, the algorithm takes too long to run. In fact, the problem with such
large solution spaces is that it would take days or even years to run a brute-force algorithm.
In this example, however, there were only 26 possible answers. It is important to note that
for each answer, we had to execute several operations, but the overall runtime is quite small
on a modern computer. If we fail condition 2, we will not know whether we have found the
right answer even if we have it. It's obvious here because most of the strings of text are not
intelligible messages, so we can pick out Caesar's message right away.

In this section, we will focus on the first conditions because we can use combinatorics
to count the sample space for various problems to evaluate the efficacy of brute-force
algorithms.

Staying on the theme of cryptanalysis (the art and science of breaking codes), suppose
we receive the following encrypted message:

toa bxfew grknm cks jxuyz kdar h lhvp akq

If we input this into the brute-force algorithm (try it!), you will see that none of the
26 shifts makes an intelligible message, so the author has apparently used a different,
possibly more sophisticated method to encrypt their message. None of the 26 alternative
alphabets allowed by the Caesar cipher accurately model the encryption used. A wider
class of encryption is a so-called simple substitution cipher wherein each letter in the true
message (the plaintext) is replaced by another letter in the coded message (the ciphertext)
but is not necessarily a Caesar cipher where the alphabet is just shifted. This leads to
a problem that is more like a cryptogram that you might see in a newspaper or puzzle
book. A valid brute-force algorithm would have to search a larger set of alternate
alphabets and we would have to view the messages to determine whether they are
intelligible. But how large is this set of alphabets? Clearly, we can note the following:

• A could be replaced by any of the 26 letters of the alphabet.

• B could be replaced by any of the 25 remaining letters.

• C could be replaced by any of the 24 remaining letters.

Efficacy of brute-force algorithms 79

A familiar trend emerges: the factorial. Indeed, any of these possible ciphertext alphabets
are re-orderings or permutations of the normal alphabet, so there are 26! ≈ 4.03 . 1026,
or 403 heptillion such alphabets.

Clearly, a brute-force algorithm that constructs the messages found by applying each
possible alphabet in the solution space and inspecting them manually is not practical.
If we could check 10 messages per second, it would take 1.2 quintillion years, or 10 million
times the age of the universe! A fully computerized version at best may read and check
with dictionaries to see whether the text forms words at a rate of several million per
second, but this still requires a runtime of billions of years.

Although the brute-force approach of testing would almost certainly produce the right
answer if completed, this is not enough for it to be practical. It has to be possible to
complete it in a useful period of time. Even worse for brute force, this is not even
a complex type of encryption—making up an alphabet by hand can be done in just
a couple of minutes!

Example – the traveling salesman problem
Suppose a traveling salesman will drive around to visit N cities, including his home city,
to try to sell his wares and then return home. He wants to minimize the distance he travels
so that his fuel costs are as small as possible; so, the question of the Traveling Salesman
Problem (TSP) is as follows:

Given the list of cities and the minimum distance between each two cities, in what order
should the salesman visit each city and return home with a minimum travel distance?

The TSP is a classical problem in operations research, and we will study more advanced
approaches to the problem in Chapter 9, Searching Data Structures and Finding Shortest
Paths; but for now, let's see how this problem responds to a brute-force algorithm by
thinking about what exactly must be done to solve it, and also consider the size of the data
structures that should be stored.

First, if we have a list of N cities and the distances between two cities, how many distances
will there be? To find the number of unique pairs of cities, we would need to consider
every combination of 2 out of N cities. Note that we do not consider permutations
because, for example, the distance from Chicago to Dallas is the same as the distance from
Dallas to Chicago, so the order does not matter, and storing separate distances would be
redundant. Thus, the number of distances we will have is as follows:

(𝑁𝑁2) =
𝑁𝑁!

(𝑁𝑁 − 2)! 2! =
𝑁𝑁(𝑁𝑁 − 1)

2

80 Combinatorics Using SciPy

This allows us to know precisely how much memory the data will take, allowing
pre-allocation of a data structure with space for (N(N – 1))/2 spaces.

Next, a brute-force way to solve the problem is to simply find the distance of each possible
circuit the salesman could make through the cities and compare the distances; so how
many such circuits are there? If the salesman starts in his hometown, he has N – 1 cities
to choose from for the second city. After visiting the second city, he has N – 2 choices
for his third city, and so on, until he runs out of cities, when he returns home. This is
a permutation, so there are (N – 1)! possible circuits he could take.

There is a bit of a problem with this accounting. Suppose there are only five cities and he
takes a circuit that we label as follows:

𝑎𝑎 → 𝑑𝑑 → 𝑒𝑒 → 𝑐𝑐 → 𝑓𝑓 → 𝑏𝑏 → 𝑎𝑎

We have highlighted this in red in the following figure, showing the full set of links
between the cities:

Figure 4.4 – The whole set of paths with the circuit we mentioned in red for a small TSP with N = 6

Another possible circuit is as follows:

𝑎𝑎 → 𝑏𝑏 → 𝑓𝑓 → 𝑐𝑐 → 𝑒𝑒 → 𝑑𝑑 → 𝑎𝑎

Summary 81

This is the same circuit but in the reverse order (simply reverse the arrows in the
preceding figure). This circuit will require him to travel the exact same distance as the first
circuit since it traverses all the same roads, just in the reverse order. Since the reverse of
each circuit will be included in our calculation of (N – 1)! circuits, we can divide that by 2
to cut the work that the brute-force algorithm must do in half, as we will need to test only
the following:

(𝑁𝑁 − 1)!
2

This is a substantial reduction in the time needed to carry out such a brute-force approach.

For a six-city problem, there are only (6)(5)/2 = 15 distances and only 5!/2 = 60 possible
circuits the salesman could take (ignoring reverse versions of circuits).

However, even though this reduces the time by 50%, we saw with the previous cryptology
problems that brute-force algorithms are only feasible for tiny problems, so reducing the
computation by half is not enough to practically solve the TSP unless the number of cities,
N, is very small. If N = 20, still a relatively small problem, we have the following number
of possible non-redundant circuits:

19!
2 ≈ 6.08 × 1016

This would be entirely infeasible to solve with brute force.

Summary
In this chapter, we primarily discussed how to count the cardinality, or size, of sets of
different types. First, we looked at counting Cartesian products, where we take one
element from each of a sequence of sets to create a new set. Counting the size of these
comes down to the fundamental counting rule, which we used to count binary structures
and the colors that can be displayed with HTML/CSS.

Second, we looked at permutations and combinations using factorials (for permutations)
and binomial coefficients (for combinations), which we derived directly from the
fundamental counting rule. For factorials, the key tool in Python is the factorial
function in the math library and, for binomial coefficients, the binom function from the
SciPy library.

Lastly, we took a look at just a few applications of combinatorics in computer science,
including memory allocation, the (poor) speed of brute-force algorithms in a few
examples in the area of cryptology, and for a classical optimization problem, the TSP.

82 Combinatorics Using SciPy

The tools from this chapter will be used repeatedly as we progress through the book. In
particular, counting is important in computing probabilities in the next chapter, Chapter
5, Elements of Discrete Probability. The so-called complexity analysis of algorithms will be
covered more generally and more deeply in Chapter 7, Computational Requirements for
Algorithms, and we will continue from the discussion of brute-force algorithms on to more
effective approaches for various problems.

5
Elements of Discrete

Probability
Probability is the study of randomness, chance, and uncertainty. We experience
randomness all the time–from the weather to the stock market to the results of sporting
events and elections. We can never predict these things with certainty, but we can make
reliable statements about the likelihood (or probability) of events occurring through
careful study of patterns in the uncertainty and variables that may affect it.

The type of probability that's most important to discrete mathematics and computer
science is to do with, of course, discrete sets. In this chapter, after establishing how
probability works in the general sense, we will present elements of combinatorial
probability. This is important in situations where each resulting outcome of a random
experiment is equally likely, so that the chance that the result is in a certain set of
outcomes which depends on counting the size of the set. Then, we will look at conditional
probability and Bayes' theorem, which allow us to update probabilities based on learning
new information, which is quite an important idea in machine learning and other topics.
We will then use this theory to consider Bayesian spam filters, which try to automatically
identify which emails are legitimate and which are not. The key turns out to be Bayes'
theorem, which takes in user input when it makes mistakes in classifying emails and
updates its approach to improve over time.

84 Elements of Discrete Probability

After that, we will discuss random variables, which take some random numerical values
and analyze them by considering their average values through the idea of a mean of
a random variable and how erratic they are via the idea of their variance. All of this
will culminate in a look at Google's PageRank system for ranking search results, which
revolutionized web searches in the late 1990s and early 2000s.

In this chapter, we will be covering the following topics:

• The basics of discrete probability

• Conditional probability and Bayes' theorem

• Bayesian spam filtering

• Random variables, means, and variance

• Google PageRank I

Important Note
Please navigate to the graphic bundle link to refer to the color images for
this chapter.

The basics of discrete probability
As we have said, making predictions or finding probabilities requires careful analysis,
so we need a mathematical framework for probability. It will all center around the idea of
a random experiment.

Definition – random experiment
A random experiment is any process that has an uncertain outcome.

Simple examples of random experiments are tossing a coin or rolling a die, each of which
has an uncertain outcome. These are easy to analyze, but some random experiments are
much more difficult, such as predicting tomorrow's weather. Despite the complexity,
experts can estimate the chance of each possible result of the random experiment using
complex meteorological models, taking into account temperatures, humidity, and other
atmospheric data.

Something each example has in common is that there is a random result for each
experiment. A coin toss may result in heads or tails. We may roll a 1, 2, 3, 4, 5, or 6 on
the die. The weather may be clear tomorrow, or it may rain or snow. These are called
outcomes.

The basics of discrete probability 85

Definitions – outcomes, events, and sample spaces
Let's look at what outcomes, events, and sample spaces are:

• Each possible result of a random experiment is an outcome.

• A set of outcomes is an event.

• A sample space S is the set of all possible outcomes of a random experiment.

Example – tossing coins
Consider a random experiment where we toss a coin. Let H represent the coin landing
on heads and let T represent the coin landing on tails. The sample space of this random
experiment is S = {H, T}.

The coin can land on heads or tails, each of which is a single outcome. Events are sets of
outcomes, that is, subsets of S. All possible events would be , {H}, {T}, and {H, T}.

Example – tossing multiple coins
Instead of just one coin, consider a random experiment where we toss three coins. In this
case, the outcome of the experiment is a sequence of three outcomes from several coin
tosses. Therefore, the sample space S consists of the following:

Figure 5.1

The list of all possible events for this random experiment would be quite long. Keep in
mind that events are simply any subsets of the 8 outcomes in the sample space shown
previously. This makes for a total number of events given here:

(80) + (81) + (82) + (83) + (84) + (85) + (86) + (87) + (88) = 256

We know this from Chapter 4, Combinatorics Using SciPy, which was on combinatorics for
counting combinations.

As you may have noticed, randomly flipping a coin is equivalent to randomly selecting
a binary digit—often 0 represents tails and 1 represents heads, as we will see in some more
advanced examples later—which feeds nicely into computer science applications due to
the ubiquity of binary.

86 Elements of Discrete Probability

With our coverage of the ideas of random experiments and their sample spaces, we have
established all the things that could occur from some random process, but not the core
quantity we seek: the chance of each outcome occurring. As you might suspect, each
random experiment has its own way of assigning these values to events; a function takes
events as inputs and returns probabilities. Such a function is called a probability measure.

Definition – probability measure
A probability measure is a function P: {Events} → [0,1] mapping events to numbers
between 0 and 1 (probabilities), where P(S) = 1 and the countable additivity holds.

For pairwise-disjoint events A1, A2, …, we have P(A1 A2 …) = P(A1) + P(A2) +….

Important Note
This means, for every pair of events An and Am from the sequence, An Am =
if m ≠ n. In other words, the events are non-overlapping events; they share no
outcomes in common.

Let's unpack this definition a little.

The codomain of any probability measure P is [0,1]. The outputs are probabilities,
or chances of events occurring, so they should not be more than 100% or less than 0%.
The higher this output, the more likely the event is to occur:

Important Note
If an event has a probability of 0, it is not true in general that an event cannot
occur, but this is true in the context of discrete probability for finite sets.
Likewise, a probability of 1 does not imply an event must occur in general.

1. The probability of the whole sample space P(S) is 1. The sample space consists of all
the possible outcomes, so the probability that one of them occurs must be 1.

2. The countable additivity property says that if some events (sets of outcomes) are
disjointed (do not share any outcomes), then we can calculate the probability that
one event of the group occurs as the sum of their individual probabilities.

From these definitions, we can easily arrive at some elementary properties of probabilities.

The basics of discrete probability 87

Theorem – elementary properties of probability
Let A and B be events, then P(A B) = P(A) + P(B) if A and B are disjointed:

1. P() = 0.

2. P(Ac) = 1 – P(A)

Proof
The preceding theorem can be proven as follows.

Since A and B are disjointed, A B is just a simpler version of the set A1 A2 … from the
countable additivity condition of the definition of a probability measure, so the same
result applies—namely, P(A B) = P(A) + P(B):

1. Since S = S and these sets are disjointed, the previous result and the fact that
P(S) = 1 gives us P(S) = P(S) + P(), or 1 = 1 + P(), so P() = 0.

2. Notice S is a union of the two disjoint sets, A and Ac; by the previous result,
P(S) = P(A Ac) = P(A) + P(B). Then, we have 1 = P(A) + P(Ac), or 1 – P(A) = P(Ac).

All of these properties are intuitive results:

• The first property says the probability that event A or event B happens is the sum of
the probabilities when they share no outcomes.

• The second property says the probability that there is no outcome is 0—by
definition, the random experiment has some outcome, although it is uncertain.

• The third property says the probability that event A does not occur is 1 minus the
probability that it does occur. As an obvious example of the third property, if there
is a 40% chance that it will rain tomorrow, there must be a 60% chance that it will
not rain.

Example – sports
The soccer teams Real Madrid CF and FC Barcelona will be competing in an upcoming
match. A sports analyst has forecast that Madrid has a 40% chance of winning, Barcelona
has a 50% chance of winning, and that otherwise a draw will occur. So, then, what is the
probability that a draw will occur?

The first step in many probability problems is to introduce some notation. Let
B = {FC Barcelona wins}, M = {Real Madrid CF wins}, and D = {a draw occurs}, whose
union makes up the sample space S.

88 Elements of Discrete Probability

What is the probability that a draw will occur? Notice that D = (B M)c; that is, a draw is
the complement of Barcelona or Madrid winning the match. So, we have this:

P(T) = P(B M)c = 1 – P(B M)

by property 3 above. Next, B and M are disjoint events since both teams cannot win, so
property 1 implies this:

P(B M) = P(B) + P(M)= 0.5 + 0.4 = 0.9,

This means the following:

P(T) = 1 - 0.9 = 0.1,

So, there is a 10% chance that there will be a draw, assuming the predictions of the analyst
are accurate.

Of course, this example is rather simple and could be solved more informally quite quickly
using simple intuition, but constructing some suitable notation and referring back to the
specific properties of probabilities becomes more and more essential as the complexity of
our problems increases.

The next two theorems are fundamental properties of probability that are necessary for
some of the more complex results we will consider later.

Theorem – Monotonicity
If A B, then P(A) ≤ P(B).

Proof
Notice that B = A (B – A) (the blue portion plus the orange portion in the figure), which
are clearly disjoint sets:

Figure 5.2

The basics of discrete probability 89

Then, the previous theorem tells us that P(B) = P(A) + P(B – A) ≥ P(A), since P(B - A)
is a probability and, therefore, cannot be negative.

In other words, the property of monotonicity simply means that if we start with some
discrete event A and it is possible to add some outcomes to it to create another discrete
event B, the probability of event B is the same (if all the extra outcomes have zero
probability) or will increase (if the outcomes have positive probability).

Some previous theorems show us how to calculate the probability of a union of disjoint
events A B, but what if A and B share some outcomes? The Principle of Inclusion-
Exclusion provides a path to calculating these types of probabilities.

Theorem – Principle of Inclusion-Exclusion
For two events A and B, P(A B) = P(A) + P(B) – P(A B).

Proof
Notice from the diagram that A B consists of three disjoint parts: the orange, blue, and
yellow subsets:

Figure 5.3

Now, P(A) is the sum of the probabilities of the orange and blue parts while P(B) is the
sum of the probabilities of the yellow and blue parts. If we were to add these all together,
we would add the probability of the blue part, A B, twice rather than just once. So,
if we subtract one back away, we get P(A B) = P(A) + P(B) - P(A B).

This result gives us a new capability. It allows us to calculate the probability of a union of
events, even if the events are not disjoint, with a simple formula.

90 Elements of Discrete Probability

Definition – Laplacian probability
A Laplacian random experiment is one where every outcome has the same probability.

This verbal description seems rather simple, but when combined with the properties of
probability measures, it actually contains much that is instructive.

Theorem – calculating Laplacian probabilities
Consider a Laplacian random experiment:

1. The sample space is finite, |S| = |{s1, s2, …, sn}| = n < ∞.

The probability of each outcome is 1𝑛𝑛 .

The probability of an event E S is |𝐸𝐸||𝑆𝑆| .

Proof
We will prove the three claims in order as follows:

1. Let the sample space be a countable (but possibly infinite) set, S = {s1, s2, …}. Since
the experiment is Laplacian, the probability of each outcome, P({sj}) = c for some
number c for every j = 1, 2,…, then P(S) = c + c + … = ∞, but this must be 1 if P is
a probability measure, which contradicts the assumption that S may be countably
infinite, so S must be finite.

2. By the previous result, S = {s1, s2, …, sn} for some finite number n. So, we have this:

1 = 𝑃𝑃(𝑆𝑆) = 𝑃𝑃({𝑠𝑠1}) +⋯+𝑃𝑃({𝑠𝑠𝑛𝑛}) = 𝑛𝑛𝑃𝑃({𝑠𝑠𝑗𝑗})

1
𝑛𝑛 = 𝑃𝑃({𝑠𝑠𝑗𝑗}),

This is equivalent to 1/|S|.

3. Let 𝐸𝐸 = {𝑠𝑠𝑖𝑖1,… , 𝑠𝑠𝑖𝑖𝑘𝑘} ⊆ S where k ≤ n. Then, we have the following:

𝑃𝑃(𝐸𝐸) = 𝑃𝑃({𝑠𝑠𝑖𝑖1,⋯ , 𝑠𝑠𝑖𝑖𝑘𝑘}) = 𝑃𝑃({𝑠𝑠𝑖𝑖1}) +⋯+𝑃𝑃({𝑠𝑠𝑖𝑖𝑘𝑘}) = 𝑘𝑘𝑃𝑃({𝑠𝑠𝑗𝑗}) =
𝑘𝑘
𝑛𝑛 =

|𝐸𝐸|
|𝑆𝑆|.

The basics of discrete probability 91

Example – tossing multiple coins
From a previous example, the sample space for tossing three coins is the following:

Figure 5.4

Now, clearly, each of these is equally likely to occur (assuming the coin is fair), so it is
a Laplacian random experiment. Then, we see that the probability of each sequence of
coin results is 1/8. With this fact, we can calculate some other probabilities:

𝑃𝑃({0 heads}) = 𝑃𝑃({𝑇𝑇𝑇𝑇𝑇𝑇}) = 1
8

𝑃𝑃({1 heads}) = 𝑃𝑃({𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑇𝑇}) = 3
8

𝑃𝑃({2 heads}) = 𝑃𝑃({𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑇𝑇}) = 3
8

𝑃𝑃({3 heads}) = 𝑃𝑃({𝐻𝐻𝐻𝐻𝐻𝐻}) = 1
8

The previous example was pretty simple because we could easily list the whole sample
space and count the sizes of the events, but calculating probabilities for Laplacian events
with much larger sample spaces requires us to use the combinatorial properties we learned
about in the previous chapter.

Definition – independent events
Events A and B are independent if P(A B) = P(A)P(B).

Practically speaking, events A and B do not affect one another. For example, tossing heads
on one coin is independent of tossing tails on the next coin.

Example – tossing many coins
Suppose we toss 50 fair coins. By the fundamental counting rule, the sample size here
would be |S| = 250 = 1,125,899,906,842,624, since each sequence of heads and tails of the
50 coins has 50 parts, each with two possible results.

92 Elements of Discrete Probability

Of course, the sample size is too large to list it quickly, but we can still calculate
probabilities. Suppose we want to know the probability that we get 25 heads—again,
writing down all the events where this occurs is impractical, but we can view the set of
sequences where there are exactly 25 heads as the number of combinations of 50 elements
where 25 are heads; so, we have this:

𝐸𝐸25 = |{25 heads}| = (50
25) = 126,410,606,437,752

That implies the following:

P(𝐸𝐸25) =
|𝐸𝐸25|
|𝑆𝑆| = 126,410,606,437,752

1,125,899,906,842,624 ≈ 0.1123 .

Calculating one of these by hand is easy, but calculating the probabilities of E1, E2, …, E50
is pretty slow by hand, so let's use Python to compute the binomial coefficients for each
index 1, 2, …, 50 in a loop via SciPy's binom function and print out the probabilities of
each possible number of heads:

Import packages with the functions we need
import scipy.special
import matplotlib.pyplot as plt

probabilities = []

for n in range(51):
 # Calculate probability of n heads
 probability = scipy.special.binom(50, n) / (2 ** 50)

 # Convert to a string with 6 decimal places
 probString = "{:.6f}".format(probability)

 # Print probability
 print('Probability of ' + str(n) + ' heads: ' + probString)

 # Add probability to list
 probabilities.append(probability)

Plot the probabilites
plt.plot(range(51), probabilities, '-o')
plt.axis([0, 50, 0, 0.15])
plt.show()

Conditional probability and Bayes' theorem 93

This is the (truncated) output:

Probability of 22 heads: 0.078826
Probability of 23 heads: 0.095962
Probability of 24 heads: 0.107957
Probability of 25 heads: 0.112275
Probability of 26 heads: 0.107957

Note that P({25 heads}) ≈ 0.1123, as we just found. The code also generates a plot with the
last three lines of code, as we see here:

Figure 5.5

Conditional probability and Bayes' theorem
In everyday life, our knowledge of the past informs our predictions about the future. For
example, if the team with the best record in a basketball league were about to play against
the team with the worst record, we would likely estimate the chance of the first team
winning the game to be higher than if we did not know that fact.

This same idea in the context of this chapter would be to calculate the probability of
an event occurring after learning that another event has occurred. This is a conditional
probability and it applies in situations where we learn information over time, which
influences our evaluations of probabilities for subsequent events, which is important to
machine learning, artificial intelligence, and many other fields.

94 Elements of Discrete Probability

Definition – conditional probability
For two events A and B where P(B) > 0, the conditional probability of A given B is as
follows:

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵)

This is the proportion of the time A occurs given the knowledge that B also occurs.

Example – temperatures and precipitation
Suppose we have gathered data on high temperatures and whether or not it rained in
Melbourne, FL, on May 11 for each year from 1977 to 2018 and have found the following
data on high temperatures and the frequency of rain within each temperature category:

Figure 5.6

We assume the relationship between precipitation and temperature is not significantly
changing over time. Suppose a temperature sensor in a particular location is not working,
but we are able to detect that it rained—based on this, what is the probability that the
temperature is in each range?

Say B = {it rains} and T let be the temperature:

𝑃𝑃(51 ≤ 𝑇𝑇 ≤ 60|𝐵𝐵) = 𝑃𝑃({51 ≤ 𝑇𝑇 ≤ 60} ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

1
50
25
50

= 1
25

Conditional probability and Bayes' theorem 95

Similarly, we end up with this:

𝑃𝑃(61 ≤ 𝑇𝑇 ≤ 70|𝐵𝐵) = 𝑃𝑃({61 ≤ 𝑇𝑇 ≤ 70} ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

5
50
25
50

= 5
25

𝑃𝑃(71 ≤ 𝑇𝑇 ≤ 80|𝐵𝐵) = 𝑃𝑃({71 ≤ 𝑇𝑇 ≤ 80} ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

10
50
25
50

= 10
25

𝑃𝑃(81 ≤ 𝑇𝑇 ≤ 90|𝐵𝐵) = 𝑃𝑃({81 ≤ 𝑇𝑇 ≤ 90} ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

8
50
25
50

= 8
25

𝑃𝑃(91 ≤ 𝑇𝑇 ≤ 100|𝐵𝐵) = 𝑃𝑃({91 ≤ 𝑇𝑇 ≤ 100} ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

1
50
25
50

= 1
25

While our faulty temperature sensor makes finding the high temperature impossible, the
preceding calculation gives us a probability that the temperature is in each range given the
fact that it rained—and a pretty high probability, 0.72, that the temperature is between 71
and 90.

Next, we will establish a few more useful results about probability and illustrate how they
can be applied with some examples.

Theorem – multiplication rules
If A and B are events, then the following statements are true:

1. If P(B) > 0, then P(A B) = P(B)P(A|B).

2. If P(A) > 0, then P(A B) = P(A)P(B|A).

Proof

For claim (1), by definition of conditional probability, ℙ(𝐴𝐴|𝐵𝐵) =
ℙ(𝐴𝐴 ∩ 𝐵𝐵)
ℙ(𝐵𝐵) . Multiplying both

sides by P(B) gives P(B)P(A|B) = P(A B). The result for the second claim follows by the
same argument if we interchange the roles of events A and B.

96 Elements of Discrete Probability

Note that we previously gave a simpler formula to compute P(A B) if events A and B are
independent, that is, by simply multiplying them, but the formula from this theorem
works in any case and, therefore, gives us the capability of calculating some new sorts of
probabilities.

Theorem – the Law of Total Probability
Let A1, A2, … be events that partition the sample space S. Let B be an event:

P(𝐵𝐵) = ∑P(𝐴𝐴𝑛𝑛 ∩ 𝐵𝐵)
∞

𝑛𝑛=1
= ∑P(𝐵𝐵|𝐴𝐴𝑛𝑛)P(𝐴𝐴𝑛𝑛)

∞

𝑛𝑛=1
.

Proof
Since S is broken into disjoint sets A1, A2, … and B is a subset of S, disjoint parts of B are in
A1, A2, … as well, and B = (A1 B) (A2 B) …. By countable additivity, P(B) is the sum
of their probabilities. The rightmost part of the equation result uses the multiplication rule
to rewrite each P(An B) as P(B | An)P(An).

The Law of Total Probability is very valuable because it can give us the probabilities of
some event B given its probability conditioned on a sequence of other events.

That is, Ai Aj = for all i ≠ j and ⋃𝐴𝐴𝑖𝑖
∞

𝑖𝑖=1
= 𝐴𝐴1 ∪ 𝐴𝐴2 ∪⋯ = 𝑆𝑆 .

Theorem – Bayes' theorem
Let A and B be events with positive probabilities (that is, P(A) > 0 and P(B) > 0):

𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵|𝐴𝐴)

Equally, the following applies:

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵) .

Bayesian spam filtering 97

Proof
Equating the two results of the previous theorem and dividing each side by P(B),
we get this:

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)

𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵|𝐴𝐴)

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵) .

The proof of Bayes' theorem is extremely simple from the definition of conditional
probability, but it is nevertheless one of the most important results in all of probability
theory, especially in applications where we gain information related to random
experiments over time that we want to use to update our evaluation of probabilities, such
as continuous video feeds in computer vision, stock prices over time, and more.

Bayesian spam filtering
Suppose we have a filter that flags emails that it identifies as spam. Consider the events
F = {e-mail flagged as spam} and T = {e-mail is spam}. If you have ever used a spam filter,
you know that this is imperfect, so these sets do not coincide. Sometimes legitimate
messages are caught by a spam filter and sometimes spam is undetected by the filter.

Suppose the developers of the spam filter did some extensive testing on a huge sample of
emails and found several results:

• The probability that spam emails will be caught by the filter (true positives) is 0.95,
or P(F|T) = 0.95.

• The probability that legitimate e-mails are not caught by the filter (true negatives) is
0.98, so P(Fc|Tc) = 0.98.

• The probability that an email from the selected sample is spam is 0.1, or P(T) = 0.1.

Suppose an email is caught by the filter—what is the probability that it is actually spam? In
other words, what is P(T|F)? By Bayes' theorem, it would be this:

𝑃𝑃(𝑇𝑇|𝐹𝐹) = 𝑃𝑃(𝑇𝑇)𝑃𝑃(𝐹𝐹|𝑇𝑇)
𝑃𝑃(𝐹𝐹)

98 Elements of Discrete Probability

We do not know the probability that an arbitrary email will be flagged, P(F), but we can
use the Law of Total Probability to find it:

𝑃𝑃(𝐹𝐹) = 𝑃𝑃(𝐹𝐹|𝑇𝑇)𝑃𝑃(𝑇𝑇) + 𝑃𝑃(𝐹𝐹|𝑇𝑇𝐶𝐶)𝑃𝑃(𝑇𝑇𝐶𝐶)
And, since

P(F|Tc) = 1 – P(F|T) = 1 – 0.95 = 0.05

and

P(Tc) = 1 – P(T) = 1 – 0.1 = 0.9,

we have the following:

𝑃𝑃(𝑇𝑇|𝐹𝐹) = (0.1)(0.95)
(0.95)(0.1) + (0.05)(0.9) ≈ 0.68

Therefore, even if an email is flagged as spam, there is only a 68% chance the email is spam
given the flaws in the filter, which seemed quite modest at first.

In this section, we have shown how Bayesian probability is commonly used in identifying
spam email messages. Spam filtering is one example of a classification problem, which in
general try to automatically classify objects into categories. The same general idea is very
common in many other classification problems, and Bayesian probability is one of the
main tools in this area.

Next, we continue to some more useful probability theory about random variables, which
we will combine with the Bayesian ideas we have learned to analyze one of the more
influential ideas in the internet era—Google's PageRank algorithm.

Random variables, means, and variance
Informally, we can say that random variables are functions that map outcomes to
numerical values. Since the probability measure assigns probabilities to outcomes and
events, we may define the probability that a random variable equals certain values. The
technical definition is as follows.

Random variables, means, and variance 99

Definition – random variable
A function X: S → R, where R is a discrete set, is a discrete random variable (RV).

Important Note
The other main class of RVs is continuous RVs, which take values in R or some
other uncountable set instead of just a discrete set, but they are outside the
scope of this book.

Example – data transfer errors
Data transferred over digital communication channels are, at the lowest level, a stream of
binary digits. Sometimes there can be noise or other distortions that cause errors in their
transmission. It is important to quantify the errors, but it is random, so the best we can do
is estimate the chance of different numbers of errors.

Suppose we send a single byte of eight bits, where each digit has a probability p of being
in error and they are all independent of each other. So, what is the probability that some
number k out of 8 bits received are incorrect?

By independence, the probability that the first k bits are incorrect and the remaining 8 – k
bits are correct is pk(1 – p)8-k, since the chance of accuracy is 1 – p. However, the positions

of the k errors could be chosen from the 8 bits in (8𝑘𝑘) ways, so if X is an RV counting the

number of errors, then we have the following for k = 1, 2, …, 8:

𝑃𝑃(𝑋𝑋 = 𝑘𝑘) = (8𝑘𝑘)𝑝𝑝
𝑘𝑘(1 − 𝑝𝑝)8−𝑘𝑘

Generally speaking, this type of RV is called a binomial RV and the function forms
its PMF.

On the other hand, some RVs may not come from some well-known class and may be
constructed from empirical data, as the next example shows.

100 Elements of Discrete Probability

Example – empirical random variable
Consider a 10-sided die with numbers 1 through 10, but it is shaped irregularly with some
sides larger than others and an unknown weight distribution, and we would like to know
the chance that it takes each value.

Let X be an RV corresponding to the value rolled on the die. To estimate the PMF, one
approach is to just roll the die repeatedly and count the number of times it lands on each
number. Suppose we roll the die 1,000 times and we get the following frequencies:

Figure 5.7

These proportions serve as an empirical estimate of the PMF of X.

Definition – expectation
Let X : S → {r1, r2, …} be a discrete random variable. The expectation of X is defined
as follows:

𝐸𝐸[𝑋𝑋] = 𝑟𝑟1𝑓𝑓(𝑟𝑟1) + 𝑟𝑟2𝑓𝑓(𝑟𝑟2) + ⋯
 = 𝑟𝑟1𝑃𝑃(𝑋𝑋 = 𝑟𝑟1) + 𝑟𝑟2𝑃𝑃(𝑋𝑋 = 𝑟𝑟2) +⋯

=∑𝑟𝑟𝑖𝑖𝑃𝑃(𝑋𝑋 = 𝑟𝑟𝑖𝑖)
∞

𝑖𝑖=1

If the sum is not infinite, E[X] is also called the expected value or mean of X. Furthermore,
if g is a function, then we have the following:

𝐸𝐸[𝑋𝑋] =∑𝑔𝑔(𝑟𝑟𝑖𝑖)ℙ(𝑋𝑋 = 𝑟𝑟𝑖𝑖)
∞

𝑖𝑖=1

Note that the expected value is just like a weighted average.

Random variables, means, and variance 101

Example – empirical random variable
Continuing with the previous example, we can calculate the expected value of the RV X
representing the result of rolling the die as follows:

𝐸𝐸[𝑋𝑋] = (1)(0.129) + (2)(0.242) + (3)(0.053) + (4)(0.016) + (5)(0.057) + (6)(0.095) + (7)(0.228)
+ (8)(0.033) + (9)(0.101) + (10)(0.046)

= 4.92

So, the die will be valued at 4.92 on average.

The mean of an RV is important because it tells us the average value of the RV if we were
to run the underlying random experiment over and over, but this is not the only thing
we would typically like to know about an RV.

For example, betting $100,000 on rolling a 1, 2, 3, or 4 on a fair six-sided die would result
in the gambler gaining $34,000 on average, but that does not mean it is a good idea! The
result is either +$100,000 or -$100,000, and nothing in between, so the RV only takes
values far away from the mean.

As this example shows, another important consideration is how much the RV tends to
vary from the mean, so we have a measurement of how spread - out the RV is, called
variance.

Definition – variance and standard deviation
Let X: S → R be a discrete random variable; its variance is then this:

𝜎𝜎2 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸[𝑋𝑋])2]

The standard deviation of X is this:

𝜎𝜎 = √𝜎𝜎2

The following result is typically the more practical formula to use for calculating variance
than the definition given previously.

102 Elements of Discrete Probability

Theorem – practical calculation of variance
If X is a discrete RV, then the following applies:

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[𝑋𝑋2] − 𝐸𝐸[𝑋𝑋]2

Proof
By definition, the following is true:

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸[𝑋𝑋])2]

=∑(𝑠𝑠𝑖𝑖 − 𝐸𝐸[𝑋𝑋])2𝑃𝑃(𝑋𝑋 = 𝑠𝑠𝑖𝑖)
∞

𝑖𝑖=1

=∑𝑠𝑠𝑖𝑖2𝑃𝑃(𝑋𝑋 = 𝑠𝑠𝑖𝑖) − 2𝐸𝐸[𝑋𝑋]
∞

𝑖𝑖=1
∑𝑠𝑠𝑖𝑖𝑃𝑃(𝑋𝑋 = 𝑠𝑠𝑖𝑖)
∞

𝑖𝑖=1
+ 𝐸𝐸[𝑋𝑋]2∑𝑃𝑃(𝑋𝑋 = 𝑠𝑠𝑖𝑖)

∞

𝑖𝑖=1

= 𝐸𝐸[𝑋𝑋2] − 2𝐸𝐸[𝑋𝑋]𝐸𝐸[𝑋𝑋] + 𝐸𝐸[𝑋𝑋]2

 = 𝐸𝐸[𝑋𝑋2] − 𝐸𝐸[𝑋𝑋]2.

Example – empirical random variable
Continuing the previous example with an irregular 10-sided die, we can calculate the
variance, recalling that E[X] = 4.92. First, we calculate this:

𝐸𝐸[𝑋𝑋2] = (12)(0.129) + (22)(0.242) + (32)(0.053) + (42)(0.016) + (52)(0.057) + (62)(0.095)
+ (72)(0.228) + (82)(0.033) + (92)(0.101) + (102)(0.046)

= 32.74 ,
That gives us this:

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[𝑋𝑋2] − 𝐸𝐸[𝑋𝑋]2 = 32.74 − (4.92)2 = 8.5336 .

Google PageRank I
In the late 1990s, there were many search engines on the internet, including Yahoo,
Altavista, and Ask Jeeves, but when Google emerged in the early 2000s, it quickly
supplanted all of those as the most popular search engine and has remained popular for
nearly 20 years, in large part because its results were of such high quality that users flocked
to the website. Google used a new approach to web searches that generated very good
results.

Google PageRank I 103

Developed by Stanford University students, and later Google founders, Larry Page and
Sergey Brin (along with researchers Rajeev Motwani and Terry Winograd) in 1996,
the algorithm used was called PageRank. Google's primary searching algorithms have
certainly progressed from this since 1996 but it remains a key part of their approach.

The key idea of PageRank is to not merely to look for websites that match the user's search
terms most closely like most other search tools at the time but to weight the matches
by the importance of matching websites in some sense, so that important websites are
ranked highest and show up first in the list of search results. They measure importance
by counting the number of links and the quality of the links to various web pages. So, the
more links a web page has from high-ranked web pages, the higher PageRank will rank
the page.

While ingenious, PageRank is actually a fairly simple use of probability. It is easy to
understand the main idea of PageRank with the ideas we have developed in this chapter.
Suppose we have an internet I of N web pages:

𝐼𝐼 = {𝑊𝑊1,𝑊𝑊2,… ,𝑊𝑊𝑁𝑁}

On I, we define two functions:

1. Outgoing links, C: I → {0, 1, 2, …, N - 1}, where C(Wj) is the number of links leaving
the jth web page, where self-links do not count and multiple links to the same web
page count as a single link.

2. PageRank, PR: I → [0,1], where PR(Wj). It is calculated as follows:

𝑃𝑃𝑃𝑃(𝑊𝑊𝑗𝑗) = 1 − 𝑑𝑑
𝑁𝑁 + 𝑑𝑑 ∑ 𝑃𝑃𝑃𝑃(𝑊𝑊𝑖𝑖)

𝐶𝐶(𝑊𝑊𝑖𝑖)
𝑊𝑊𝑖𝑖∈𝑀𝑀(𝑊𝑊𝑗𝑗)

,

Here M(Wj) is the set of web pages linking to Wj. In other words, PageRank is
1 − 𝑑𝑑
𝑁𝑁

 plus
d times the sum of ratios of PageRank to outgoing links for each other web page linking
to Wj.

The constant d ∈ (0,1) is called the damping factor. (The authors set d = 0.85 in their
original paper, although Google may have adjusted it since then.) Regardless of the
value of d, it can be shown that the function PR is a probability mass function, assigning
probabilities to W1, W2, ..., WN. (Note that, by definition, the probabilities assigned by
a probability mass function sum to 1, so this is what the previous sentence claims,
mathematically speaking.)

104 Elements of Discrete Probability

Important Note
Note that there is some confusion in the literature about the first term of the PR
calculation: sometimes N is left out of the denominator. This does not have an
important impact, but the resulting PageRanks do not form a probability mass
function without this N.

These probabilities have a more intuitive interpretation. PageRank proposes an imaginary
person navigating this internet who randomly click links and will eventually stop on
a certain web page. The value d represents the probability that this person will click the
next link at each step. The PageRank of a web page PR(Wi) represents the probability that
this randomly clicking surfer will stop on web page Wi.

As an example, suppose N = 5. In other words, suppose our small internet has only
five web pages. Of course, this is unrealistic, but it allows us to paint the picture of how
PageRank works on a small scale. We will also assume d = 0.85. Furthermore, suppose
we have the following structure of links between the web pages:

Figure 5.8

• W1 links to W2, W3, W4, and W5, so C(W1) = 4.

• W2 links to W1 and W4, so C(W2) = 2.

• W3 links to W1, W4, and W5, so C(W3) = 3.

• W4 links to W1, so C(W4) = 1.

• W5 links to W4, so C(W5) = 1.

Google PageRank I 105

Note that the formula for PR(Wi) given previously requires knowledge of every other
PR(Wi) for i ≠ j, so it cannot be calculated directly. The typical approach is to initially
assume that each PageRank is equal, or 1/N = 1/5, and then calculate new PageRanks
iteratively using knowledge about links.

In the second iteration, the PageRanks are as follows:

Figure 5.9

We see that web pages W1 and W4 would be highest ranked, which makes sense as these
are the web pages in the diagram with the most incoming links. Furthermore, we see that
the sum of all five PageRank values is 1, as we claimed by referring to PR as a probability
mass function. In practice, more iterations would be run using the PageRanks we
calculated as inputs to the next step along with updated information on links, which may
change over time.

These ideas from probability explain how Google's PageRank algorithm works, but this
is certainly not the whole story, as we have only considered a small collection of just
four web pages. Scaling PageRank up to the entire internet involves the mathematics of
linear algebra. We will cover the essentials of linear algebra in Chapter 6, Computational
Algorithms in Linear Algebra.

106 Elements of Discrete Probability

Summary
In this chapter, we have primarily discussed the core ideas of probability theory, and in
particular discrete probability. These allow us to calculate the probability that an event
will occur, or, in other words, the chance that it will occur. We then applied these ideas to
some popular modern innovations.

First, we constructed a probability space, made up of a sample space, a set of events, and
a probability measure. The definition of these topics led directly to many elementary
properties of probabilities and formulas to compute probabilities of events, such as those
made up of unions of events and certain intersections of events. This led to an important
class of probability spaces: the Laplacian space, where each outcome is equally likely. This
reduces many probability calculations to counting problems, which we learned to solve in
Chapter 4, Combinatorics Using SciPy.

Then, we considered conditional probability, which is essentially the idea that gaining new
knowledge should influence our calculation of probabilities. This idea led to some useful
results, including Bayes' theorem and the Law of Total Probability. After establishing these
results, we continued to apply them to a classification problem—Bayesian spam filtering—
which seeks to automatically categorize emails as legitimate or spam.

Lastly, we established a little more probability theory about RVs, their averages via means,
and a measure of how random they are: the variance. These ideas, along with Bayesian
probability, allowed us to then discuss the Google PageRank approach to ranking results
in web searches. In the next chapter, we will learn about computational algorithms that are
used in linear algebra.

Part II – Implementing
Discrete Mathematics
in Data and Computer

Science

This part of the book covers applications of discrete mathematics to core concepts of
computer science, including linear algebra; the complexity of algorithms in the worst case
and on average; storing and extracting features from graphs, trees, and networks, graph
searches; and finding shortest paths on networks.

This part comprises the following chapters:

• Chapter 6, Computational Algorithms in Linear Algebra

• Chapter 7, Computational Requirements for Algorithms

• Chapter 8, Storage and Feature Extraction of Graphs, Trees, and Networks

• Chapter 9, Searching Data Structures and Finding Shortest Paths

6
Computational

Algorithms in
Linear Algebra

This chapter covers standard methods and algorithms of linear algebra commonly used
in computer science and machine learning problems. Linear algebra centers on systems
of equations, a problem where we need to find a set of numbers that solve not just one
equation, but many equations simultaneously, using special types of arrays called matrices.
Matrices can directly model tree, graph, and network structures that are central to so
many computer science applications and the math behind Google's PageRank, among
others, all ideas to which we will apply these ideas in later chapters. Systems of equations
are key in regression analysis and machine learning.

We will delve into solving these systems of equations from both geometric and
computational perspectives before scaling the methods up to solve larger problems with
algorithms in Python, because the huge amount of work you would have to do to solve
large problems by hand would be impractical.

The mathematical content of the topics is complete, although it may be a refresher for
readers, but the computational algorithms and Python functions are likely new.

110 Computational Algorithms in Linear Algebra

The following topics will be covered in this chapter:

• Understanding linear systems of equations

• Matrices and matrix representations of linear systems

• Solving small linear systems with Gaussian elimination

• Solving large linear systems with NumPy

The chapter is mostly dedicated strictly to the mathematics of linear algebra and its
algorithms, but they will be applied to practical problems in most of the remaining
chapters of the book. By the end of the chapter, you will have an understanding of what
systems of equations are, and learn how to solve small problems by hand and large
problems with some NumPy functions in Python. In addition, you will learn about
matrices and how to do arithmetic with them, both by hand and with Python.

Important Note
Please navigate to the graphic bundle link to refer to the color images for
this chapter.

Understanding linear systems of equations
Equations of two variables whose graphs are straight lines, or linear equations, are one
of the core parts of any elementary algebra course. They model simple proportional
relationships well, but several linear equations taken at once, perhaps involving more than
just two variables, allow for the modeling of much more complex situations, as we will see.

In this section, we discuss these familiar equations and then consider the idea of
a system of multiple linear equations that we wish to solve all at once. We also define
linear equations and systems of linear equations that involve more than just two variables
and show how to solve them by hand.

Definition – Linear equations in two variables
A linear equation of the variables x1 and x2 is any equation that can be written in the form
a1x1 + a2x2 = b for some real numbers a1, a2, and b. The solutions of the equation are all
ordered pairs (x1, x2) ∈ R2 that satisfy the equation.

Understanding linear systems of equations 111

Definition – The Cartesian coordinate plane
The Cartesian coordinate plane is the familiar concept of a 2D plane on which we can plot
points corresponding to an ordered pair of coordinates (x1, x2). The first coordinate x1
represents the horizontal position of the point and the second coordinate x2 represents the
vertical position of the point, as can be seen here:

Figure 6.1 – A Cartesian coordinate plane with points A (2,1), B (-2,-2), and C (1,-3)

Some readers may be accustomed to seeing the coordinate axes labeled as x and y with
coordinate (x, y), but we go with x1 and x2 because we will continue to develop some
useful theory in more dimensions.

For example, in 3D space, where we have not only left-right and up-down axes, but also
a forward-backward axis, which we will label x3, additional dimensional spaces are
difficult, if not impossible, to visualize fully since our human eyes are adapted to see
in the three spatial dimensions, but a 4D space has a fourth axis labeled x4, a 5D space
has a fifth one, and so on.

112 Computational Algorithms in Linear Algebra

Example – A linear equation
Consider the linear equation 6x1 + 3x2 = 3. We can solve x2 in terms of x1 as follows. First,
subtract 6x1 from each side to get 3x2 = 3 – 6x1.

Then, divide each side of the equation by 3 to get x2 = 1 – 2x1.

Therefore, we get the solution set of the equation to be the set of all ordered pairs (in other
words, points on the plane), where x2 = 1 – 2x1, which we can write in set notation as {(x1,
1 – 2x1) : x1 ∈ R}. In other words, for any given real x-coordinate x1, we can construct
a corresponding y-coordinate as 1 – 2x1.

Notice there are infinitely many solutions to the linear equation, one ordered pair for
each real number. While we cannot plot infinitely many points to draw the graph of the
function in reality, if we choose several x1 coordinates, compute the corresponding x2
coordinates, and plot the points on the Cartesian coordinate plane, we see that they are
aligned along a linear path:

Figure 6.2 – The graph of the linear equation x2 = 1 – 2x1. Note that the line passes through points
(x1, x2) = (1, -1) and (x1, x2) = (0, 1), which we can see clearly satisfy the equation

It turns out that the graph of every linear equation traces out a straight line in the
Cartesian coordinate plane, which is precisely why we call them linear.

Understanding linear systems of equations 113

Definition – System of two linear equations in two
variables
A linear system of two equations of variables x1 and x2 is made up of two linear equations
of x1 and x2. A solution to the system is an ordered pair (x1, x2) that satisfies both equations
simultaneously.

Since each equation can be represented as a line, the geometric equivalent of this problem
is to find point(s) of intersection of the lines. Intuitively, it is clear two lines may cross at
exactly one point, the lines may be parallel and never intersect, or the lines may coincide
with one another entirely.

If the lines cross, we call the system consistent. If the lines are parallel, we call the system
inconsistent. If the lines coincide, we call the system dependent. The next three examples
will investigate each of these three situations.

Example – A consistent system
Consider the following system of two linear equations:

2x1 + 3x2 = -1

6x1 + 3x2 = 3

To find a solution to the system, we need to find coordinates x1 and x2 such that both
equations are satisfied simultaneously. So, suppose these coordinates exist, then we can
think about what must be true about them. The second equation must be true, so if
we solve it for x2 (as we did earlier), we see x2 = -2x1 + 1, an expression of x2 in terms of x1.
If we knew x1, this would provide a formula for us to establish the other coordinate, x2.

Since the first equation must also be satisfied for a solution (x1, x2), it must be valid to
replace x2 with –2x1 + 1 in that equation, which provides a path to find x1:

2x1 + 3(-2x1 + 1) = -1.

Multiplying the 3 by each term in the parentheses, we have the following:

2x1 - 6x1 + 3 = -1.

Combining the x1 terms and subtracting 3 from each side of the equation, we have the
following:

-4x1 = -4

This gives the value of x1 if we divide each side of the equation by -4:

x1 = 1

114 Computational Algorithms in Linear Algebra

Thus, if there exists a solution, its x1 coordinate is 1, but we know we can compute x2 as

x2 = -2(1) + 1 = -2 + 1 = -1,

so, we see the solution must be (x1, x2) = (1, -1). Plotting the two lines on a graph confirms
that the point (1, -1) is precisely where the two graphs of the linear equations cross:

Figure 6.3 – The graphs of the two linear equations cross at point (1, -1)

Since the lines cross at one point, it is a consistent system. The point (1, -1) is the only
solution to the system of equations, the single point where the lines cross.

Example – An inconsistent system
Consider the following system of two linear equations:

2x1 + x2 = 3

6x1 + 3x2 = 3

To find a solution to the system, again, we need to find coordinates x1 and x2 such that
both equations are satisfied simultaneously. So, suppose these coordinates exist, then
we can think about what must be true about them. The second equation must be true,
so if we solve it for x2 (as we did above), we see

x2 = -2x1 + 1,

an expression of x2 in terms of x1. If we knew x1, this would provide a formula for us to
establish the other coordinate, x2.

Understanding linear systems of equations 115

Since the first equation must also be satisfied for a solution (x1, x2), it must be valid to
replace x2 with –2x1 + 1 in that equation, which provides a path to find x1:

2x1 + (-2x1 + 1) = 3

Adding the x1 terms, we get

1 = 3.

Clearly something went wrong here, but what is it exactly? Our initial assumption was
that there exists a point (x1, x2) that satisfies both equations, but this assumption logically
implies a result that says 1 = 3, which is clearly false.

The proof by contradiction method we learned in Chapter 2, Formal Logic and
Constructing Mathematical Proofs, reveals that this initial assumption must have been
false, so there is no such point: there is no solution to this system of equations.

In the following graph, we see that the two lines are parallel, and therefore never cross one
another. This means the lines share no points, as can be seen in the following graph:

Figure 6.4 – The graphs of the two linear equations in this example are parallel, so they never cross and
there are no solutions to the system

As we defined previously, a linear system of equations that are geometrically represented
as parallel lines is inconsistent. This means there is no solution to the system because there
is no point that touches both lines.

116 Computational Algorithms in Linear Algebra

Example – A dependent system
Consider the following system of two linear equations:

2x1 + x2 = 1

6x1 + 3x2 = 3

To find a solution to the system, again, we need to find coordinates x1 and x2 such that
both equations are satisfied simultaneously. So, suppose these coordinates exist, then
we can think about what must be true about them. The second equation must be true,
so if we solve it for x2 (as we did previously), we see

x2 = -2x1 + 1,

an expression of x2 in terms of x1. If we knew x1, this would provide a formula for us to
establish the other coordinate, x2.

Since the first equation must also be satisfied for a solution (x1, x2), it must be valid to
replace x2 with –2x1 + 1 in that equation, which provides a path to find x1:

2x1 + (-2x1 + 1) = 1

Adding the x1 terms, we are left with only

1 = 1.

Once again, something does not seem quite right. Instead of getting the x1 coordinate
we wanted, we get a simple result that says 1 = 1. This is obviously true, but it is not
a solution to the linear system, so what does it mean?

If we take the second equation and divide it by 3, we get 2x1 + x2 = 1, the same as the first
equation, so the second equation is not really adding any extra information in a sense.
If a point (x1, x2) satisfies the first equation, of course it satisfies the second, and vice versa.
Therefore, each line represents the same set of infinitely many points, so any point in the
form (x1, -2x1 + 1), given a real number x1, is a solution.

We call such systems of linear equations with infinitely many solutions dependent because
we have two equations representing identical lines, as can be seen in the following graph:

Understanding linear systems of equations 117

Figure 6.5 – The graphs of the two linear equations in this example are geometrically the same line, so
every point on one line is on the other line, so they are all solutions to the system of equations

So far in this chapter, we have defined linear equations with two unknowns and drawn
their graphs, which are lines. Then, we considered linear systems of two equations with
two unknowns. As there are two linear equations, plotting the two equations results in two
lines. Then, in a series of examples, we saw that there are three possible types of system of
two linear equations:

• Consistent system: The lines cross at one point, which is the unique solution to the
system.

• Inconsistent system: The lines never cross, so there are no solutions.

• Dependent system: The lines are the same, so all points on the line are solutions.

In the next couple of pages, we will extend these ideas to linear systems of more than
two equations with more than two unknowns. Although the situation becomes more
complicated in this setting, much of the preceding theory still applies. Linear systems are
still classified the same way, with these same three classes.

Let's define a few more notions for these larger systems of linear equations before
continuing to solve them, which turns out to be harder to do by hand than these examples,
so we will turn to a number of Python functions to solve them for us once we understand
the main idea of the solution method.

118 Computational Algorithms in Linear Algebra

Definition – Systems of linear equations and their
solutions
A system of n linear equations in variables x1, x2, …, xn is a set of equations in the
following form:

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 +⋯+ 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏1

𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 +⋯+ 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏2

 ⋮ ⋮ ⋱ ⋮
 𝑎𝑎𝑛𝑛1𝑥𝑥1 + 𝑎𝑎𝑛𝑛2𝑥𝑥2 +⋯+𝑎𝑎𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏𝑛𝑛

where each aij and bi is a real constant. A solution to the system is a point (x1, x2, …, xn) in
n-dimensional space that solves all of the equations simultaneously.

So, just like the definition when we limited it to two equations and two variables, we seek
a point that solves all the equations. However, instead of the solution being a point in a 2D
coordinate plane, the solutions to these are points in a higher dimensional space. The 3D
case is easy to visualize, as we are accustomed to seeing the world in three dimensions, but
it is not possible to visualize the higher dimensional spaces quite so well, so the geometric
interpretations of solutions are not so easy to discuss. Nevertheless, the mathematics
we will present produces accurate results in those higher dimensional spaces.

Definition – Consistent, inconsistent, and dependent
systems
A system of n linear equations with n variables falls into one of three categories:

• If the system has one solution, it is called consistent.

• If the system has no solutions, it is called inconsistent.

• If the system has infinitely many solutions, it is called dependent.

It is possible to solve these larger systems of linear equations by hand by means of
a substitution process similar to what we did in the preceding example, but it quickly
gets very long and tedious, so we will present a standard method called Gaussian
elimination that always works, but it is best left to algorithms in practice. However,
we need to do some pre-processing to the system to put it into a special new form with
some mathematical structures called matrices before we can use Gaussian elimination
(both by hand and with Python).

Matrices and matrix representations of linear systems 119

Matrices and matrix representations of linear
systems
Solving systems of more than two equations in more than two variables is very
cumbersome under the algebraic notation we used previously for the small notations,
so we need an alternate notation. We will take the coefficients of a system of n linear
equations with n unknowns denoted aij above and arrange them in a special sort of array
called a matrix. What makes matrices distinct from arrays you may be accustomed to
using in code is that matrices have a special multiplication operation that simplifies many
calculations and, especially, makes solving larger linear systems much easier.

We will also represent the xj and the bi terms as matrices to make a single matrix equation
instead of n separate equations. Once we do that, we will be ready to solve these larger
systems efficiently by hand and then with Python.

Definition – Matrices and vectors
An m-by-n matrix A is a rectangular array of numbers with m rows and n columns, which
have some associated mathematical operations defined between matrices and between
numbers and matrices.

Each number in a matrix is called an entry or element of the matrix and the entry in the ith
row and jth column is typically written with a lowercase aij. A matrix is usually written in
the form

𝐀𝐀 = [
𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

] = (𝑎𝑎𝑖𝑖𝑖𝑖)

.

Vectors are matrices with either one row or one column. The following vectors are called
the column vectors of A, where each column of A will become a vector:

[
𝑎𝑎11
𝑎𝑎21
⋮

𝑎𝑎𝑚𝑚1

] , [
𝑎𝑎12
𝑎𝑎22
⋮

𝑎𝑎𝑚𝑚2

] ,… , [
𝑎𝑎1𝑛𝑛
𝑎𝑎2𝑛𝑛
⋮

𝑎𝑎𝑚𝑚𝑛𝑛

]

The following vectors are called the column vectors of A:
[𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛], [𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛],… , [𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛]

120 Computational Algorithms in Linear Algebra

In Python, we can represent the following two matrices,

𝐀𝐀 = [
3 2 1
9 0 1
3 4 1

] and 𝐁𝐁 = [
1 1 2
8 4 1
0 0 3

] ,

and access specific entries of the matrices in the following code:

import numpy

initialize matrices
A = numpy.array([[3, 2, 1], [9, 0, 1], [3, 4, 1]])
B = numpy.array([[1, 1, 2], [8, 4, 1], [0, 0, 3]])

print the entry in the first row and first column of A
print(A[0,0])

print the entry in the second row and third column of B
print(B[1,2])

So, the code first creates the two matrices, A and B, given here. (They are called NumPy
arrays in the language of Python.)

Then, we call and print the number in the very first row and very first column of matrix A,
which in code is A[0,0], but in mathematical notation is a11 = 3, which the code outputs.
Lastly, we similarly choose B[1,2], the element in row 2 and column 3 of matrix B, in
other words, b23 = 1

3
1

It is important to be aware that Python and most other programming languages begin
indexing arrays (and matrices) with 0 while mathematicians tend to start with 1, which is
why the numbers in the code are one less than the mathematical language would suggest.

Important note
There is a matrix class built into NumPy that has been used for linear algebra,
but current documentation says this class will be deprecated in the future, so
users should use arrays instead. We will follow this convention.

Matrices and matrix representations of linear systems 121

Now that we have some common vocabulary about matrices, we will discuss ways to
manipulate matrices, multiply them with numbers, add and subtract matrices, and
multiply matrices. These operations are what distinguish matrices from ordinary arrays.

Definition – Matrix addition and subtraction
Let A = (aij) and B = (bij) be m-by-n matrices. Their sum is found by simply adding the
entries of each matrix elementwise, meaning each aij is added to each bij as follows:

𝐀𝐀 +𝐁𝐁 = [
𝑎𝑎11 + 𝑏𝑏11 𝑎𝑎12 + 𝑏𝑏12 ⋯ 𝑎𝑎1𝑛𝑛 + 𝑏𝑏1𝑛𝑛
𝑎𝑎21 + 𝑏𝑏21 𝑎𝑎22 + 𝑏𝑏22 ⋯ 𝑎𝑎2𝑛𝑛 + 𝑏𝑏2𝑛𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑚𝑚1 + 𝑏𝑏𝑚𝑚1 𝑎𝑎𝑚𝑚2 + 𝑏𝑏𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛 + 𝑏𝑏𝑚𝑚𝑛𝑛

]

In other words, we add up the terms in the same positions in matrix A and in matrix B.

And the difference in two matrices works similarly, as can be seen here:

𝐀𝐀 −𝐁𝐁 = [
𝑎𝑎11 − 𝑏𝑏11 𝑎𝑎12 − 𝑏𝑏12 ⋯ 𝑎𝑎1𝑛𝑛 − 𝑏𝑏1𝑛𝑛
𝑎𝑎21 − 𝑏𝑏21 𝑎𝑎22 − 𝑏𝑏22 ⋯ 𝑎𝑎2𝑛𝑛 − 𝑏𝑏2𝑛𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑚𝑚1 − 𝑏𝑏𝑚𝑚1 𝑎𝑎𝑚𝑚2 − 𝑏𝑏𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛 − 𝑏𝑏𝑚𝑚𝑛𝑛

]

In other words, we subtract up the terms in the same positions in matrix A and in matrix B.

Important note
The sum and difference of two matrices is only defined if the two matrices have
the same dimensions, in other words, the same number of rows and the same
number of columns.

We can use the numpy.add and numpy.subtract functions to add and subtract
matrices in Python as in the following code, which follows from the preceding code:

Add A and B
print(numpy.add(A,B))

Subtract A and B
print(numpy.subtract(A,B))

122 Computational Algorithms in Linear Algebra

The code has the following output:

[[4 3 3]
 [17 4 2]
 [3 4 4]]

[[2 1 -1]
 [1 -4 0]
 [3 4 -2]]

Of course, this is in fact A + B and A – B, which we could find by hand if we add and
subtract all the numbers in the matrices element by element.

Next, we continue with more arithmetic of matrices: multiplying a whole matrix by
a scalar (or, by a number).

Definition – Scalar multiplication
Let c ∈ R be a real number. Such a constant is frequently referred to as a scalar. The
product of this scalar c and a matrix A is defined as a matrix where each element is the
product of c times the corresponding element of A:

𝑐𝑐𝐀𝐀 = 𝑐𝑐 [
𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

] = [
𝑐𝑐𝑎𝑎11 𝑐𝑐𝑎𝑎12 ⋯ 𝑐𝑐𝑎𝑎1𝑛𝑛
𝑐𝑐𝑎𝑎21 𝑐𝑐𝑎𝑎22 ⋯ 𝑐𝑐𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑐𝑐𝑎𝑎𝑚𝑚1 𝑐𝑐𝑎𝑎𝑚𝑚2 ⋯ 𝑐𝑐𝑎𝑎𝑚𝑚𝑛𝑛

]

In simpler terms, we simply take our real number c and multiply it by each and every
number in the matrix.

As we see, the sum and differences of matrices and the scalar multiplication of matrices
are somewhat obvious, as we simply do the operations for each element. Matrix
multiplication, on the other hand, is not simply elementwise multiplication.

Before that, we define transposes of matrices and a special case of the matrix product
called the dot product, which is limited to multiplying a row vector by a column vector.

Matrices and matrix representations of linear systems 123

Definition – Transpose of a matrix
Let A = (aij) be an m-by-n matrix. The transpose of A, denoted AT, is the n-by-m matrix
resulting from switching each element in the ith row and jth column of A to the element in
the jth row and ith column of the new matrix,

𝐀𝐀𝑇𝑇 = [
𝑎𝑎11 𝑎𝑎21 ⋯ 𝑎𝑎𝑛𝑛1
𝑎𝑎12 𝑎𝑎22 ⋯ 𝑎𝑎𝑛𝑛2
⋮ ⋮ ⋱ ⋮

𝑎𝑎1𝑚𝑚 𝑎𝑎2𝑚𝑚 ⋯ 𝑎𝑎𝑛𝑛𝑚𝑚
]

.

In simpler terms, a transpose moves the elements of a matrix around by swapping the row
of an element with its column. Here are a couple of examples:

• Element a21 in row 2, column 1 of the original matrix A moves to row 1, column 2 in
the new transpose matrix, AT.

• Element an1 in row n, column 1 of the original matrix A moves to row 1, column n
in the new transpose matrix, AT.

Important note
The transpose of a matrix in general has different dimensions to the original
matrix, with the number of rows and the number of columns interchanged.

We can also use NumPy to do scalar multiplication and find transposes, as the following
code, continuing on from the previous code, will do:

Multiply A by a scalar 5
print(numpy.multiply(5,A))

Find the transpose of A
print(numpy.transpose(A))

The output of this code is as expected:

[[15 10 5]
 [45 0 5]
 [15 20 5]]

[[3 9 3]
 [2 0 4]
 [1 1 1]]

124 Computational Algorithms in Linear Algebra

The first multiplication of 5 with the matrix A multiplies each element of the original
matrix by the number 5. The second part takes a transpose properly by swapping the rows
with the columns of the original A matrix.

To wrap up the section, we will look at multiplication not between a number and a matrix,
but multiplication between two matrices, which has some special rules. This allows us to
convert systems of linear equations of any size into a single matrix equation.

Definition – Dot product of vectors
The dot product of a 1-by-n row vector a and an n-by-1 column vector b is defined as

𝐚𝐚 ⋅ 𝐛𝐛𝑇𝑇 = 𝐚𝐚𝐛𝐛𝑇𝑇 = [𝑎𝑎1 𝑎𝑎2 ⋯ 𝑎𝑎𝑛𝑛][
𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑛𝑛
]

𝑇𝑇

=∑𝑎𝑎1𝑗𝑗𝑏𝑏𝑗𝑗1
𝑛𝑛

𝑗𝑗=1
= 𝑎𝑎11𝑏𝑏11 + 𝑎𝑎12𝑏𝑏21 +⋯+ 𝑎𝑎1𝑛𝑛𝑏𝑏𝑛𝑛1

.

In other words, we multiply the first number in a by the first number in b, the second
number in a by the second number in b, and so on, and add up all of the results of these
multiplications.

In general, matrix multiplication for larger matrices computes dot products of the rows
of the first matrix and columns of the second matrix.

Definition – Matrix multiplication
Let A be an n-by-m and let B be an m-by-p matrix, written in the forms

𝐀𝐀 = [
𝐚𝐚1
𝐚𝐚2
⋮
𝐚𝐚𝑛𝑛
] and 𝐁𝐁 = [𝐛𝐛1𝑇𝑇 𝐛𝐛2𝑇𝑇 ⋯ 𝐛𝐛𝑝𝑝𝑇𝑇] ,

where each ai and bj is a 1-by-m column vector. So, we represent our matrix A by stacking
up its horizontal rows a1, a2, …, an, and we represent our matrix B by stacking its vertical
columns side by side.

The product of the matrices is denoted by AB and the element of AB in the ith row and jth
column is the dot product of the ith row of A and the jth column of B, as follows:

𝐀𝐀𝐀𝐀 =

[

 𝐚𝐚1𝐛𝐛1

𝑇𝑇 𝐚𝐚1𝐛𝐛2
𝑇𝑇 ⋯ 𝐚𝐚1𝐛𝐛𝑝𝑝

𝑇𝑇

𝐚𝐚2𝐛𝐛1
𝑇𝑇 𝐚𝐚2𝐛𝐛2

𝑇𝑇 ⋯ 𝐚𝐚2𝐛𝐛𝑝𝑝
𝑇𝑇

⋮ ⋮ ⋱ ⋮
𝐚𝐚𝑛𝑛𝐛𝐛1

𝑇𝑇 𝐚𝐚𝑛𝑛𝐛𝐛2
𝑇𝑇 ⋯ 𝐚𝐚𝑛𝑛𝐛𝐛𝑝𝑝

𝑇𝑇]

Matrices and matrix representations of linear systems 125

In simpler terms, matrix multiplication takes the dot product of each row vector of A with
each column vector of B.

Important note
The matrix product AB is only defined when A has the same number of
columns as B has rows, and AB has the same number of rows as A and the same
number of columns as B. Thus, multiplying an n-by-m matrix by an m-by-p
matrix is permitted and results in an n-by-p matrix.

This definition can feel a little difficult, so next, we will do an example where we carefully
multiply two matrices by hand and then do it in Python.

Example – Multiplying matrices by hand
and with NumPy
Define two matrices as

𝐀𝐀 = [1 3 1
2 3 0] and 𝐁𝐁 = [

3 5
1 0
2 2

] .

Then, the product can be computed as

𝐀𝐀𝐀𝐀 = [1 3 1
2 3 0] [

3 5
1 0
2 2

]

.

By the definition of matrix multiplication, this is a matrix made up of dot products of each
row of A with each column of B:

𝐀𝐀𝐀𝐀 = [𝐚𝐚1𝐛𝐛1
𝑇𝑇 𝐚𝐚1𝐛𝐛2𝑇𝑇

𝐚𝐚2𝐛𝐛1𝑇𝑇 𝐚𝐚2𝐛𝐛2𝑇𝑇
]

To do each of the four dot products, we multiply the first term of a row by the first term of
a column, the second term of a row by the second term of a column, and finally the third
term in a row by the third term of a column and add them up:

𝐀𝐀𝐀𝐀 = [(1)(3) + (3)(1) + (1)(2) (1)(5) + (3)(0) + (1)(2)
(2)(3) + (3)(1) + (0)(2) (2)(5) + (3)(0) + (0)(2)]

126 Computational Algorithms in Linear Algebra

Simplifying the arithmetic, we get

𝐀𝐀𝐀𝐀 = [8 7
9 10]

Suppose we were to multiply BA instead. This is possible since B is 3-by-2 and A is 2-by-3,
so the result BA will be a 3-by-3 matrix. Unlike ordinary multiplication, with matrix
multiplication, we have AB ≠ BA in some cases. Mathematically, this means matrix
multiplication is not a commutative operation: the order of the factors matters.

We see matrix multiplication is easy enough to do by hand for a small matrix, but if the
matrices were much larger, the number of steps in the arithmetic would make this pretty
inefficient, so we generally prefer to use code. We may multiply matrices with NumPy
with the following code. Again, this continues on from the previous code in this section:
Multiply A and B
print(numpy.dot(A,B))

The output is as follows
[[19 11 11]
 [9 9 21]
 [35 19 13]]

Important note
NumPy has numpy.multiply and numpy.dot functions.

numpy.multiply performs component-wise multiplication.

numpy.dot performs matrix multiplication, as we defined previously.

Now that we know about matrix multiplication, the definition of a system of n linear
equations with n unknowns x1, x2 …, xn can be written in terms of matrix multiplication as

[
𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛
] [
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛
] = [

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑛𝑛
]

,

which can be written much more compactly as Ax = b and we call it an n-by-n linear
system, corresponding to the dimensions of A. Now, to see why this is true if things aren't
clear, let's multiply out the matrix and see what happens. If we compute the dot product of
row 1 of A by the x vector and set it equal to the top number in the b vector, we get

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 +⋯+ 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏1 ,

which is exactly the first equation in our system!

Solving small linear systems with Gaussian elimination 127

For another one, let's multiply the dot product row 2 of A by the x vector and set it equal
to the second number in b:

𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 +⋯+ 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏2 ,

which is the second equation in the system. Continuing this for each row, the matrix
multiplication of A by x will generate each equation, one by one. So, we see this
sort of matrix equation is equivalent to all n equations in our system, with each
row corresponding to one of the equations.

Another common representation that we will use is a so-called augmented matrix to
represent the system as follows:

[𝐀𝐀|𝐛𝐛] = [
𝑎𝑎11 𝑎𝑎21 ⋯ 𝑎𝑎𝑛𝑛1
𝑎𝑎12 𝑎𝑎22 ⋯ 𝑎𝑎𝑛𝑛2
⋮ ⋮ ⋱ ⋮

𝑎𝑎1𝑚𝑚 𝑎𝑎2𝑚𝑚 ⋯ 𝑎𝑎𝑛𝑛𝑚𝑚
|
𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑛𝑛
]

.

Each row in the augmented matrix [A|b] corresponds to one of the equations. The ith row
of [A|b] corresponds to the ith equation of the system:

ai1x1 + ai2x2 + … + ainxn = bi

Next, we look at an approach to solve these linear systems called Gaussian elimination and
learn how to implement it with code.

Solving small linear systems with Gaussian
elimination
In this section, we will learn how to solve an n-by-n linear system of equations Ax = b,
if possible, through a method called Gaussian elimination, which we will do by hand for
a small problem. In the next section, we implement it with Python.

We will explain through an example of a 3-by-3 system, which should make the idea clear
for larger systems, which we will formalize at the end of the section, and which we will
prefer to solve with code.

128 Computational Algorithms in Linear Algebra

First, notice that there are several manipulations we may do to the equation in the system
without changing the solutions:

• We can switch the order of the equations, which corresponds to swapping the rows
of the matrix [A|b].

• We can multiply both sides of an equation by a constant, which corresponds to
multiplying a row of [A|b] by a constant.

• We can add a multiple of one equation to another equation, which corresponds to
adding a multiple of one row of [A|b] to another row.

The effects of the augmented matrix corresponding to each of these manipulations are
called elementary row operations. Gaussian elimination is a method that will use specific
sequences of row operations to manipulate the system into a very simple version that will
make it immediately solvable or reveal it to be inconsistent or dependent. The form is
shown next.

Definition – Leading coefficient (pivot)
For each row of a matrix not fully filled with zeros, the leading coefficient (or pivot) of the
row is the first non-zero number in the row.

For example, consider the matrix

[
2 3 0
0 1 2
0 5 4

]
.

The pivots of this matrix are the 2 in the first row, the 1 in the second row, and the 5 in the
third row.

Definition – Reduced row echelon form
A matrix is in reduced row echelon form (RREF) if the following applies:

• Any zero rows are on the bottom.

• The pivot of each non-zero row is a 1 and is to the right of the pivot of the
previous row.

• Each column containing a 1 pivot has zeros in all other entries.

Solving small linear systems with Gaussian elimination 129

Example – Consistent system in RREF
For example, the following matrix is in RREF:

[
1 0 0
0 1 0
0 0 1

|
2
3
1
]

The corresponding linear system is simply

1x1 + 0x2 + 0x3 = 2

0x1 + 1x2 +0x3 = 3

0x1 + 0x2 + 1x3 = 1.

In other words, an augmented matrix in RREF immediately gives the solution of
a linear system, (2, 3, 1) in this case, if it has a pivot in each row and we know the system
is, therefore, consistent. In most cases, we will have a more complex augmented matrix
initially that is transformed into this form using elementary row operations.

Example – Inconsistent system in RREF
Suppose a system has an augmented matrix in RREF as follows:

[
1 0 0
0 1 1
0 0 0

|
4
1
2
]

Even though the third column has multiple numbers in it, this is permitted since that
column does not contain a pivot 1. The corresponding system of equations is

1x1 + 0x2 + 0x3 = 4

0x1 + 1x2 + 1x3 = 1

0x1 + 0x2 + 0x3 = 2.

However, the third row suggests 0 = 2, a contradictory statement. Just like the case with
a system of two linear equations, this means the system is inconsistent – in other words,
it has no solutions. In 2D, this means the lines are parallel, but in 3D, the equations
represent planes, so it means at least two of the planes are parallel.

130 Computational Algorithms in Linear Algebra

Example – Dependent system in RREF
Lastly, consider a system with the following RREF augmented matrix:

[
1 0 1
0 1 2
0 0 0

|
1
6
0
]

If we convert this RREF form back into equation form, we have

1x1 + 0x2 + 1x3 = 1

0x1 + 1x2 + 2x3 = 6

0x1 + 0x2 + 0x3 = 0.

The last line is true but tells us nothing about x3. Just like the 2D case, this means the
system is dependent. In this situation, x3 is called a free variable because we can construct
a point solving the system for any given x3 value.

Given x3, we know that x1 = 1 – x3 and x2 = 6 – 2x3, so the solution set for this system of
three linear equations is {(1 – x3, 6 – 2x3, x3) : x3 ∈ R}, in other words, any ordered pair in
this form is a solution.

Now we have learned the three permissible row operations and that we can easily
determine the solution of a linear system if we have transformed the system's augmented
matrix into RREF, so the question becomes, simply: Which row operations do we need to
do to go from a given augmented matrix to RREF?

Gaussian elimination answers this question by providing a sequence of row operations
that will never fail to do this conversion, which we define now.

Algorithm – Gaussian elimination
The specifics of different implementations of this method may vary and have some
changes to optimize the calculations, but the most direct approach is provided by the
following pseudocode:

Step 1: Re-order the rows of [A|b] from i to n so that the leftmost pivot is and
pivots in subsequent rows are in the same column or to the right of the pivot of the
previous row.

Step 2: Set i = 1.

Step 3: Divide row i by its pivot.

Step 4: Add multiples of row i to each successive row chosen such that the numbers
under the pivot of row i become zeros.

Solving small linear systems with Gaussian elimination 131

Step 5: Add 1 to i.

Step 6: Move all zero rows of [A|b] to the bottom. Set m to be the number of zero
rows.

Step 7: If i < n – m, return to Step 3. Otherwise, i = n – m and continue to Step 8.

Step 8: If row i has a pivot, add multiples of row i to all previous rows chosen
such that the numbers above the pivot of row i become 0. Otherwise, proceed
immediately to Step 9.

Step 9: Subtract 1 from i.

Step 10: If i = 1, terminate. Otherwise, return to Step 8.
The first phase of Gaussian elimination (Steps 1-6) ensures the matrix has all pivots set to
1 with 0s under them. The second phase (Steps 8-10) fills in 0s above the pivots so that the
matrix is converted to RREF. Augmented matrices will represent the same linear system as
the original [A|b].

Example – 3-by-3 linear system
Consider the system of linear equations:

2x1 – 6x2 + 6x3 = -8

2x1 + 3x2 – x3 = 15

4x1 – 3x2 – x3 = 10

We can write this system of equations as the following augmented matrix:

[
2 −6 6
2 3 −1
4 −3 −1

|
−8
15
19

]

First, divide row 1 by 2 to get the following:

[
2 −6 6
2 3 −1
4 −3 −1

|
−8
15
19

]
 12(row 1)
→ [

1 −3 3
2 3 −1
4 −3 −1

|
−4
15
19

]

Next, add -2 times the first row to row 2 and -4 times the first row to row 3 to fill in zeros
under the first pivot:

[
1 −3 3
2 3 −1
4 −3 −1

|
−4
15
19

] row 2+(−2)(row 1) → [
1 −3 3
0 9 −7
4 −3 −1

|
−4
23
19

] row 3+(−4)(row 1) → [
1 −3 3
0 9 −7
0 9 −13

|
−4
23
35

]

132 Computational Algorithms in Linear Algebra

Then, divide row 2 by 9 so its pivot becomes 1:

[
1 −3 3
0 9 −7
0 9 −13

|
−4
23
35

]
 19(row 2)
→ [

1 −3 3
0 1 −7

9
0 9 −13

|
−4
23
9
35

]

Add -9 times row 2 to row 3:

[
1 −3 3
0 1 −7

9
0 9 −13

|
−4
23
9
35

] row 3+(−9)(row 2) → [
1 −3 3
0 1 −7

9
0 0 −6

|
−4
23
9
12

]

Dividing row 3 by -6 completes the first phase of Gaussian elimination:

[
1 −3 3
0 1 −7

9
0 0 −6

|
−4
23
9
12

]
 1−6(row 3)
→ [

1 −3 3
0 1 −7

9
0 0 1

|
−4
23
9
−2

]

The remaining steps will comprise the second phase of Gaussian elimination. To fill in
zeros above the last pivot, add 7/9 times row 3 to row 2 and add -3 times row 3 to row 1:

[
1 −3 3
0 1 −7

9
0 0 1

|
−4
23
9
−2

]
 row 2+79(row 3)
→ [

1 −3 3
0 1 0
0 0 1

|
−4
1
−2

] row 1+(−3)(row 3) → [
1 −3 0
0 1 0
0 0 1

|
2
1
−2

]

Lastly, add 3 times row 2 to row 1 to get to the RREF:

[
1 −3 0
0 1 0
0 0 1

|
2
1
−2

] row 1+(3)(row 2) → [
1 0 0
0 1 0
0 0 1

|
5
1
−2

]

Thus, this RREF form reveals the system is consistent and its solution (5, 1, -2), is the
numbers in the rightmost column.

In this section, we have introduced the reduced row echelon form (RREF) of a matrix
corresponding to a linear system of equations introduced in the previous sections. The
RREF always easily reveals the solution to the system if it exists, or reveals the system is
inconsistent if there is no solution. After that, we considered an algorithm called Gaussian
elimination that never to convert the matrix corresponding to an n-by-n linear system of
equations to the RREF and, therefore, reveals the solution if possible. Lastly, we applied
the algorithm by hand to a small, 3-by-3 linear system.

Now that we understand the problem Gaussian elimination solves and how it works,
we will continue to learn how to implement the algorithm with NumPy.

Solving large linear systems with NumPy 133

Solving large linear systems with NumPy
The last example should make it clear that Gaussian elimination will work for any linear
system to reduce it to RREF form, but this 3-equation, 3-variable system required
a significant amount of effort to solve, and things will only become more complex for
larger systems, so the more practical way to do it is to use existing algorithms. In this
section, we will learn how to use some methods with NumPy to accomplish this task.

A Python function for solving systems of linear equations Ax = b is available in NumPy
named numpy.linalg.solve, which works for square, consistent systems. That is,
it finds solutions for all linear systems that have unique solutions.

Typically, the function uses a version of Gaussian elimination just as we have done by
hand, but it is a very smart function. First, the function chooses the order of calculations
carefully to optimize its speed. Second, if the function detects that A has a special structure
(such as a symmetric, diagonal, or banded matrix), it will take shortcuts and use variants of
Gaussian elimination and other methods that exploit the structure to run even faster!

Although we will not delve into these other methods since it would require an in-depth
study of linear algebra, we can think of the function in terms of what it accomplishes and
avoid the details. Nevertheless, we benefit from the speed-ups.

Let's try it!

Example – A 3-by-3 linear system (with NumPy)
We begin with a system we already solved by hand just to be sure we get the same answer
from the NumPy function, so consider the linear system Ax = b with the augmented
matrix form:

[𝐀𝐀|𝐛𝐛] = [
2 −6 6
2 3 −1
4 −3 −1

|
−8
15
19

]

To solve this, we need to create two NumPy matrices, one for A and one for b to feed into
the numpy.linalg.solve function and then run it:

import numpy

Create A and b matrices
A = numpy.array([[2, -6, 6], [2, 3, -1], [4, -3, -1]])
b = numpy.array([-8, 15, 19])

Solve Ax = b
numpy.linalg.solve(A,b)

134 Computational Algorithms in Linear Algebra

The numpy.linalg.solve(A,b) line runs an optimized version of Gaussian
elimination and code returns:

array([5., 1., -2.])

In other words, the code tells us the solution is (5, 1, -2), just as we found by hand, but this
time we get the solution almost instantaneously!

Example – Inconsistent and dependent systems with
NumPy
We said numpy.linalg.solve requires consistent systems, but a reasonable
question is what happens if you give it matrices A and b corresponding to an inconsistent
or dependent system, so let's try the inconsistent and dependent systems we considered in
the first example of the chapter.

In the following code, we repeat the same idea as the previous example twice more, but
this time, we solve the inconsistent and dependent problems we solved before:

import numpy

inconsistent system
A = numpy.array([[2, 1], [6, 3]])
b = numpy.array([3, 3])

print(numpy.linalg.solve(A,b))

dependent system
A = numpy.array([[2, 1], [6, 3]])
b = numpy.array([1, 3])

print(numpy.linalg.solve(A,b))

The output is as follows:

[-1.80143985e+16 3.60287970e+16]
[0. 1.]

For the inconsistent system, it returns some giant numbers in the order of 1016, but
we know there is no solution mathematically, so this is meaningless. In the case of the
dependent system, it returns (0, 1), which is a solution to the system, but it has infinitely
many solutions.

Solving large linear systems with NumPy 135

A key take-away from this example is that we should never implement numpy.linalg.
solve without carefully screening the coefficient matrix A we will feed into it because it
will return nonsense or incomplete answers without giving us any sort of warning.

How can we test A? The theory required is beyond the scope of this book, but there is
a number called a determinant that can be computed for a square matrix and there is
a theorem called the Invertible Matrix Theorem that tells us a linear system is always
consistent if the determinant of A is not 0. Therefore, a good practice is to verify that the
determinant of A is nonzero with the numpy.linalg.det function before proceeding
further. In the following code, we create a NumPy array A, compute the determinant, and
print it:

A = numpy.array([[2, 1], [6, 3]])
print(numpy.linalg.det(A))

This produces the following output:

-3.330669073875464e-16

This is a number in the order of 10-16, which is extremely tiny and suggests the
determinant is effectively 0, which would indicate numpy.linalg.solve should not
be used. In a practical implementation, we would want to check this first and output an
error if the determinant is within 10-5 of 0 in order to account for rounding errors.

Where the numpy.linalg.solve method really shines is in larger linear systems of
equations, which would be totally unreasonable to do by hand. The 3-by-3 linear system
took a whole 2 pages to solve with Gaussian elimination. It would be almost unthinkable
to solve a system of 10, 20, or 100 equations by hand! It turns out, however, that these are
not difficult for NumPy.

Example – A 10-by-10 linear system (with NumPy)
It would be cumbersome to even write down a 10-by-10 linear system of equations,
so we will rely on the short expression Ax = b, but which system will we solve? To save
the trouble of making up a problem, suppose we just generate matrices A and b with
uniformly random numbers.

It requires some deep mathematics beyond the scope of this book, but it can be
shown such a system is consistent with probability 1, so it is highly likely to satisfy the
requirements for numpy.linalg.solve():

136 Computational Algorithms in Linear Algebra

The following code will do three primary things:

• Generate A and b as 10-by-10 and 10-by-1 matrices, respectively, with elements
selected uniformly at random from the interval [-5, 5] using numpy.random.
rand.

• Use numpy.linalg.solve to find a 10-by-1 matrix x that solves the system, and
then calculates Ax – b using numpy.dot for the multiplication.

• Sum the absolute values of the 10-by-1 matrix Ax – b to verify the result is nearly
0, possibly with some tiny error resulting from rounding errors, to confirm the
solution is correct:

import numpy

numpy.random.seed(1)

Create A and b matrices with random
A = 10*numpy.random.rand(10,10)-5
b = 10*numpy.random.rand(10)-5

Solve Ax = b
solution = numpy.linalg.solve(A,b)
print(solution)

To verify the solution works, show Ax - b is near 0
sum(abs(numpy.dot(A,solution) - b))

This returns the following output:
[0.09118027 -1.51451319 -2.48186344 -2.94076307
 0.07912968 2.76425416 2.48851394 -0.30974375
 -1.97943716 0.75619575]

1.1546319456101628e-14

As you can see, numpy.linalg.solve(A,b) finds that the solution to this 10-by-10
system of linear equations is roughly (0.09, -1.51, -2.48, -2.94, 0.08, 2.76, 2.49, -0.31, -1.98,
0.76).

Note that sum and abs are some common Python function for adding and finding the
absolute values of elements of a matrix. The last line of code sums the absolute values
of Ax – b to get a number of nearly 0. This tells us Ax – b is approximately 0, so we have
confirmation that the solution is accurate, at least to 14 decimal places.

Summary 137

Important note
The numpy.random.seed(1) command is used simply so that the code
is reproducible for readers.

If you remove this line, the calls to numpy.random.rand will generate
different random numbers so that it generates a different 10-by-10 linear
system of equations and solves it.

This is a good practice for testing code with randomness.

Once again, this code runs almost instantaneously on a typical laptop, even though it
solves a rather large system by the standards of what we can compute by hand. In fact, the
performance of this function is truly extraordinary: it runs almost instantaneously even
if we replace a 10-by-10 system with a 1,000-by-1,000 system. Indeed, it solves a linear
system of 1,000 equations with 1,000 variables with sums of absolute errors in the order
of 10-10 in almost no time!

Summary
In this chapter, we covered a lot of ground! We began by taking the familiar idea of
a linear equation in two variables and demonstrated that the set of points that satisfy the
equation are exactly those that form a straight line. We then extended this to a system of
two linear equations of two variables, which represent, geometrically speaking, two lines.
A solution to the system is a point that satisfies not one, but both equations. Geometrically,
this means a solution can only be a point of intersection of the two lines. As we know from
elementary geometry, two lines must either be parallel, intersect, or coincide entirely. This
characterizes three possible conclusions about solutions: a system must have no solutions
(if they are parallel), one unique solution (if they intersect), or infinitely many solutions
(if they coincide).

Then, the real fun started as we introduced systems of many linear equations and many
unknowns, which are not so easily interpretable from a geometrical perspective, but they
share this same property, that there must be zero, one, or infinitely many solutions.

We found these larger problems to be very cumbersome to solve with basic algebra, so
we introduced a new mathematical structure to tackle this problem more efficiently: the
matrix. We learned matrices behave similar to an ordinary rectangular array of numbers,
but there is a special notion of multiplication of matrices that allows us to represent even
large linear systems of equations in a compact, rectangular form that makes computation
efficient.

138 Computational Algorithms in Linear Algebra

After learning how to perform these matrix operations using NumPy functions,
we proceeded to solve larger linear systems of equations. We learned an efficient method
called Gaussian elimination that solves these systems, solved an example system of
three linear equations with three variables, and then proceeded to learn to use NumPy's
implementation of optimized Gaussian elimination in Python.

As we proceed through the remaining chapters, we will actually be using these methods
very frequently, as linear algebra is critical for a wide array of applied problems that we will
study, ranging from problems on trees and networks, cryptography, and regression analysis,
to image processing and principal component analysis.

The next chapter is the first in a sequence of chapters based on tree, graph, and network
structures, which are incredibly important for modeling many things, such as decision
trees that guide helpdesk workers through best practices, linking structures of the web,
and computer networks. In this next chapter, we define these structures, learn what they
commonly model, use Python to store them efficiently, learn how to use linear algebra to
find some features of the structures, and examine some key mathematical results in the
area of graph theory with implications for computer science.

7
Computational

Requirements for
Algorithms

Algorithms that solve useful problems are at the heart of computer science, but an
algorithm must not only be proven to work to be practical. They may take too long
to run with our computational resources, or it may require storage of more data than
our resources allow. This chapter is dedicated to finding the amount of time and space
required to run algorithms; in short, the computational complexity of algorithms when
it comes to time and space requirements to run a certain algorithm. We will focus on
the complexity of foundational control structures and popular exemplar algorithms of
common classes of time and space complexity. Different algorithms will be implemented
using Python and the trade-off when it comes to runtime, computational resources, and
suchlike will be discussed.

By the end of this chapter, you should have learned about different algorithms, their
computational complexities, runtime, and the space required.

140 Computational Requirements for Algorithms

In this chapter, we will be covering the following topics:

• Computational complexity of algorithms

• Complexity of algorithms with fundamental control structures

• Complexity of common search algorithms

• Common classes of computational complexity

Important Note
Please navigate to the graphic bundle link to refer to the color images for
this chapter.

Computational complexity of algorithms
In this section, we will learn about what algorithms are, the complexity of algorithms,
and what they mean in terms of time and space and Big-O notation (compact notation
for classifying the time and space needed for an algorithm). By the end of this section,
you should have a good understanding of what algorithms are and their characteristics,
such as complexity, and be able to determine the Big-O notation for the complexity of
algorithms.

Algorithms are a step-by-step procedure/instruction to solve a problem or to obtain
a desired output. They can be implemented in any programming language. Some of the
important categories of algorithms from a data structure point of view are as follows:

• Search: Used to search for an item in a data structure

• Sort: Used to sort items in a required order

• Insert: Used to insert items into a data structure

• Update: Used to update an existing item in a data structure

• Delete: Used to delete an existing item in a data structure

Let's try out some of these algorithms in Python. We will perform the following tasks,
for example:

Step 1: Ask the user to input the name of their favorite fruit.

Step 2: Append the user input fruit name to a pre-existing list of fruit names.

Step 3: Update the list and display the new list.

Computational complexity of algorithms 141

Step 4: Now we will delete a selected element from the list; the user inputs the name of the
fruit they want to delete (Note: the name entered is case sensitive).

Step 5: Update the list and display the new list:

#Type of algorithm - inserting new element to pre-existing list

fruit_name = ["Jackfruit", "Honeydew", "Grapes"]
user_input1 = input("Please enter a fruit name: ")
fruit_name.append(user_input1)
print('The updated list is: ' + str(fruit_name))

#Type of algorithm - deleting element from list

user_input2 = input("Please enter the name of the fruit you
want to delete: ")
fruit_name.remove(user_input2)
print('The updated list is: ' + str(fruit_name))

Output:

Please enter a fruit name: Apple
The updated list is: ['Jackfruit', 'Honeydew', 'Grapes',
'Apple']
Please enter the name of the fruit you want to delete: Apple
The updated list is: ['Jackfruit', 'Honeydew', 'Grapes']

Process finished with exit code 0

In the preceding example, we have learned how to write an algorithm and display the
desired results. We first added the name of a fruit of our choice to the fruit_name list,
and then deleted a fruit name from the same list.

An algorithm must satisfy the following criteria in order to be called an algorithm:

• Input: It should have zero or more well-defined inputs.

• Output: It should have one or more well-defined outputs; often, this is the desired
end product of the algorithm.

• Finiteness: It should terminate after a finite number of steps. While using loops,
it should be ensured that the algorithm either ends after a certain number of steps
or when the desired output is achieved (in a finite number of steps).

142 Computational Requirements for Algorithms

• Feasibility: It should be feasible with the computing resources available.

• Unambiguous: The instructions should be clear and have only one meaning with
clearly defined inputs and outputs.

The following diagram shows how a problem can be solved by making use of multiple
algorithms. However, the ideal way to solve any problem will be to choose the most
efficient algorithm:

Figure 7.1 – Multiple algorithms to solve a problem

Despite there being multiple algorithms to solve a problem, our aim should be to find the
most efficient way (fewer requirements in terms of time and space) to do the same:

Figure 7.2 – Time and space complexity comparison for different algorithms

Computational complexity of algorithms 143

Oftentimes, there are multiple ways to solve a problem. However, we need to find the most
efficient way to achieve this. To do this, we need to be able to quantify the performance
of the different algorithms used and choose the best one. There are two things that are
crucial while comparing the performance of algorithms, namely:

• Time required: This quantifies the amount of time required to run an algorithm
to its completion as a function of length of the input.

Time requirements can be defined as a numerical function F(n), where F(n) is
measured as the number of steps, provided all steps consume the same amount
of time.

Let's say that the addition of two bits takes c seconds, hence, if we try to add n-bit
integers, it will take F(n) = n * c seconds. Hence, we can conclude that F(n) has
a linear growth as the size of the input increases.

• Space required: This quantifies the amount of memory space required by an
algorithm in its life cycle. This required memory space has two components,
namely:

• Fixed part: The space required for storing data and variables that are independent
of the size of the problem we are trying to solve. This would include the predefined
variables, constants, program size, and suchlike.

• Variable part: The space required for storing variables that are dependent on
the size of the problem; for example, dynamic memory allocation, and recursion
stack space.

Both time and space complexity are a function of the length of the input. In simpler
terms, if the input size is larger, the algorithm will take a longer duration and require
more memory space to run as compared to if the input is smaller. It is important to keep
in mind that other factors, such as the hardware, processors, and operating system, play
a crucial role in determining time and space complexity. However, for our purposes,
we will only consider the execution time of an algorithm for analyzing it.

Let's try to understand the execution time with the help of an example.

For this example, the user will input a number and the algorithm will try to compare the
input with a pre-existing list and give out an output accordingly:

Step 1: Ask the user to input a number.

Step 2: Compare the number with the numbers in the pre-existing list.

144 Computational Requirements for Algorithms

Step 3: If the input number matches any number in the list, then output Yes or else
No. Remember that the algorithm looks for the match chronologically, in other words,
the input number will be compared with the first number of the list, then the second,
and so on.

Step 4: Display the time taken for the algorithm to run:

a is a list containing some numbers
#We will compare the number input by user with the numbers in
 # this list

import timeit
tic=timeit.default_timer()

a=[1,2,3,4,5,6,7,8]
INPUT = input("Please input a number of your choice: ")
number = int(INPUT)

for i in range(len(a)):
 if a[i]== number:
 print("Yes", end=' ')
 else:
 print("No", end=' ')
print()

toc=timeit.default_timer()
time_elapsed = toc - tic
print("The time elapsed for this computation is: " + str(time_
 elapsed) + "seconds")

Output:

Please input a number of your choice: 1
Yes No No No No No No No
The time elapsed for this computation is: 2.3035541 seconds

Process finished with exit code 0

You can run the code and input a number of your choice and check for the runtime of
the algorithm. For this algorithm, we had to import a Python library called timeit for
measuring the time required for the algorithm to run. Documentation regarding the
timeit library can be found here: https://docs.python.org/3/library/
timeit.html.

https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html

Understanding Big-O Notation 145

An important thing to keep in mind is that the user input is being converted into an
integer before comparing it with the integers in the array. If this is not done, then the
algorithm would be comparing a string (input number) with integers (list) and hence
would output only Nos.

Understanding Big-O Notation
Next, let's learn about Big-O Notation. Learning about this notation is crucial since it is
used to describe the performance/complexity of an algorithm. This notation can be used
to establish the relationship between the input to the algorithm and the steps required to
execute the algorithm. Notation: O (relationship between the input and steps taken by the
algorithm – denoted by "n").

For example: If there is a linear relationship between the input and the steps taken by the
algorithm, then the Big-O notation will be O(n). Similarly, for a constant relationship, the
notation will be O(constant).

The most frequently used Big-O notations are as follows:

Figure 7.3 – Big-O notation for different types of algorithms

We will now look into some of the complexities noted in the preceding table:

• Constant complexity O(constant):

The complexity of an algorithm is said to be constant if the steps required to execute
the algorithm is constant despite the size of the input.
Let's understand constant complexity with the help of an example in Python.
We will make the algorithm do the following things:
Step 1: Input a list.
Step 2: Calculate the cube of the second item on the list:

#Constant complexity function

def constant_complexity(list):
 output = list[1]* list[1]* list[1]

146 Computational Requirements for Algorithms

 print("The end result after running the algorithm is:
 " + str(output))

constant_complexity([1,2,3,4,5,6,7])

Output:
The end result after running the algorithm is: 8

From the preceding example, we see that despite the length of the list that was
input into the algorithm, it only does one thing – calculates the cube of the second
item on the list (index numbers start from 0 in Python). Hence, the order of the
algorithm is O(2) since the algorithm concludes in two steps despite the size of the
input.

• Linear complexity O(n):

The complexity of an algorithm is said to be linear if the steps required to execute
the algorithm grow linearly with the size of the input.

Let's understand constant complexity with the help of an example in Python.
We will make the algorithm do the following things:

Step 1: Input a list.

Step 2: Count the number of iterations taken to go through the entire list.

Step 3: Print the number of iterations:
#Linear complexity

def linear_complexity(list):
 for i in list:
 print("Iteration number " + str(i))

linear_complexity([1,2,3,4,5,6,7])

Output:
Iteration number 1
Iteration number 2
Iteration number 3
Iteration number 4
Iteration number 5
Iteration number 6
Iteration number 7

Process finished with exit code 0

Understanding Big-O Notation 147

From the preceding example, we can see that the number of iterations goes up as the
length of the input goes up since the algorithm goes through each of the numbers
in the input list – this is a linear relationship. Hence, we can represent this as O(n),
where n represents the number of steps taken by the algorithm.

• Quadratic complexity O(n2):

The complexity of an algorithm is said to be quadratic if the steps required to
execute the algorithm grow quadratically with the size of the input. We will make
the algorithm do the following things:

Step 1: Input a list.

Step 2: Go through two for loops:
#Quadratic complexity

def quadratic_complexity(list):
 count = 0
 for i in list:
 for j in list:
 count += 1
 print(str(count) + "\t|First for loop
 iteration: " + str(i), '\t|',
 "Second for loop iteration:" + str(j))

quadratic_complexity([1,2,3,4])

Output:
1 |First for loop iteration: 1 | Second for loop
 iteration: 1
2 |First for loop iteration: 1 | Second for loop
 iteration: 2
3 |First for loop iteration: 1 | Second for loop
 iteration: 3
4 |First for loop iteration: 1 | Second for loop
 iteration: 4
5 |First for loop iteration: 2 | Second for loop
 iteration: 1
6 |First for loop iteration: 2 | Second for loop
 iteration: 2
7 |First for loop iteration: 2 | Second for loop
 iteration: 3

148 Computational Requirements for Algorithms

8 |First for loop iteration: 2 | Second for loop
 iteration: 4
9 |First for loop iteration: 3 | Second for loop
 iteration: 1
10 |First for loop iteration: 3 | Second for loop
 iteration: 2
11 |First for loop iteration: 3 | Second for loop
 iteration: 3
12 |First for loop iteration: 3 | Second for loop
 iteration: 4
13 |First for loop iteration: 4 | Second for loop
 iteration: 1
14 |First for loop iteration: 4 | Second for loop
 iteration: 2
15 |First for loop iteration: 4 | Second for loop
 iteration: 3
16 |First for loop iteration: 4 | Second for loop
 iteration: 4

When the for loop starts, the control of the program is first on the outer for loop.
The first index in the list is 1. After this, the control of the program moves into
the inner loop for execution. Here, each of the values in the list ([1,2,3,4]) is
iterated over one at a time until the end of the list. j holds the value of 1 in the first
iteration of the inner for loop followed by the execution of print, which outputs
the number of iterations – First for loop iteration:1 | Second for
loop iteration: 1, and moves to the next value in the list (which is 2).The
control of the program is moved back to the outer loop once the execution of the
inner loop is complete. This process is repeated until both the inner and outer loops
have been executed completely.

The total number of steps performed is n * n (for this case, the number of steps is
16), where n is the number of items in the input list.

The number of iterations will go up as the length of the input goes up, but in a
quadratic manner – this is a quadratic relationship. Hence, we can represent this as
O(n2), where n represents the number of steps taken by the algorithm.

• Complexity of complex functions:

Next, we will look at an algorithm that does multiple things and try to figure out its
Big-O notation. We will make the algorithm do the following things:

Step 1: Print "Hello World!" six times à O(6), since six steps are taken by the
algorithm for this part.

Understanding Big-O Notation 149

Step 2: Use a for loop to go through the elements of a list and print them out
à O(n), since this is linear complexity and the number of steps taken is dependent
on the number of elements in the list.

Step 3: Use a second for loop to go through the elements of a list and print
them out a O(n), since this is linear complexity and the number of steps taken is
dependent on the number of elements in the list

The overall complexity of the algorithm is O(6) + O(n) + O(n) = O(2n) + O(6):
#Complex function complexity

def complex_func (list):
 count = 0
 for i in range(6):
 count += 1
 print("Step: " + str(count) + " \t Hello
 World!")

 for j in list:
 count += 1
 print("Step: " + str(count) + " \t " + str(j))

 for k in list:
 count += 1
 print("Step: " + str(count) + " \t " + str(k))

complex_func([1,2,3,4])

Output:
Step: 1 Hello World!
Step: 2 Hello World!
Step: 3 Hello World!
Step: 4 Hello World!
Step: 5 Hello World!
Step: 6 Hello World!
Step: 7 1
Step: 8 2
Step: 9 3
Step: 10 4
Step: 11 1
Step: 12 2
Step: 13 3
Step: 14 4

150 Computational Requirements for Algorithms

As you can see, the algorithm took 14 steps to complete the 3 tasks we wanted it
to do. The complexity of the algorithm was found to be O(2n) + O(6). However,
when the size of the input list grows and becomes extremely large, then the constant
become insignificant. This is the case because twice or half of infinity is still infinity.
We can ignore the constants and the order of the algorithm will be O(n) when the
input list is extremely large. In short, we drop the non-dominant terms and the
coefficients.

When do constants matter?

As regards the preceding example, we arrived at the conclusion that the order of the
algorithm is O(n) and dropped the constant terms, (O(6)). This is applicable when the
problem size gets sufficiently large; the constant term does not matter. However, this
means that two algorithms can have the same Big-O time complexity, even though one
is always faster than the other. For example, suppose algorithm 1 requires n2 time, and
algorithm 2 requires 5*n2 + n time. For both algorithms, if we ignore the constant terms,
the Big-O notation is O(n), even though algorithm 1 is faster than algorithm 2. In this
case, the constants and low-order terms do matter in terms of which algorithm is faster.

However, it is important to note that constants do not matter in terms of the question of
how an algorithm "scales" – in other words, how the algorithm's execution time changes
when the problem size doubles or triples. Although an algorithm that requires n2 time will
always be faster than an algorithm that requires 10*n2, for both algorithms, if the problem
size doubles, the actual time will quadruple.

When two algorithms have different Big-O time complexity, the constants and low-order
terms matter only when the problem size is small. For example, if large constants are
involved, then the linear time algorithm will be faster than the quadratic time algorithm:

Figure 7.4 – Linear and quadratic complexity for different input sizes

The preceding table shows the value of 100*n (linear in n) and the value of n2/100
(quadratic in n) for some value of n. For values of n less than 104, the quadratic time is
smaller than the linear time complexity. However, as the value of n increases beyond 104,
the time complexity of quadratic is greater than the linear time complexity.

Complexity of algorithms with fundamental control structures 151

Now that we know how to come up with Big-O notation for an algorithm, let's represent
this notation in a graph to make it clearer:

Figure 7.5 – Size of input versus the number of steps taken by an algorithm for different complexities

From the preceding graph, we can see how the number of steps taken by an algorithm for
its execution is dependent on the size of the input for different kinds of time complexities.

In this section, we learned about Big-O notation and how to it calculate it for different
complexities. In the next section, we will continue our discussion by learning about the
complexity of algorithms with fundamental control structures.

Complexity of algorithms with fundamental
control structures
In this section, we will learn about a crucial concept known as control structures. By the
end of this chapter, you should have basic knowledge of control structures, their types,
how they work, and their computational complexity.

152 Computational Requirements for Algorithms

Control structures are used to specify the direction of flow in programs. They are used to
analyze and choose the direction in which the program flows, based on some parameters
or conditions. In short, control structures are just the decision making that the computer
makes. There are three basic types of fundamental control structures:

• Sequential flow

• Selection flow

• Repetitive flow

Let's understand each of these in turn.

Sequential flow
In this kind of flow, the algorithm flow depends on the series of instructions given to the
computer, and the steps are executed in an obvious sequence. The sequence might be
given by means of numbered steps explicitly. Also, it implicitly follows the order in which
the steps are written. Most of the processing will generally follow this elementary flow
pattern:

Figure 7.6 – Sequential flow

The complexity of this sequential flow is constant, since complexity is defined by the
number of steps in an algorithm.

Complexity of algorithms with fundamental control structures 153

Selection flow
This type of flow involves several conditions or parameters that decide on one out of the
several written steps. The structures that use these types of logic are known as conditional
structures:

Figure 7.7 – Selection flow

A commonly used conditional in Python for selection flow is if-elif-else.

Let's recall some of the logical conditions used in mathematics that the Python
programming language supports:

• Equals: a==b

• Not Equals: a!= b

• Less than: a < b

• Less than or equal to: a <= b

• Greater than: a > b

• Greater than or equal to: a >= b

154 Computational Requirements for Algorithms

Now that we have recalled some of the basic logical conditions, we can now apply these
conditionals to better understand if-elif-else conditionals.

• if-elif-else:

Decision making is required when we want to execute a certain section of the code
if a certain condition is satisfied. The if-elif-else statement is used in Python
for decision making.

Let's see how it works with the help of an example. We will do the following for this
example:

Step 1: We will define two variables, 'a' and 'b', and assign a value to each
of them.

Step 2: If a > b, then the algorithm will output something stating that a is greater
than b.

Step 3: If a < b, then the algorithm will output something else stating that a is less
than b.

Step 4: If a = b, then the algorithm will say that both numbers are equal:
#Complexity of if-elif-else statements

a = 10
b = 5
if b > a:
 print("b is greater than a")
elif b < a:
 print("b is less than a")
else:
 print("a and b are equal")

Output:
b is less than a

Process finished with exit code 0

The Big-O notation for if-elif-else conditionals is O(n) because in the
worst case, the algorithm must go through all the n steps. If step 2 is true, then the
algorithm will terminate after a single step, but if both steps 2 and 3 are false, then
the algorithm will terminate after executing all the conditional statements.

Complexity of algorithms with fundamental control structures 155

Repetitive flow
This type of flow is used in the case of looping – where we are trying to run a piece of code
a desired number of times or until a specified condition is applicable. There are two types
of repetitive flow; let's discuss them in detail here:

• Repeat-For Structure – For loop:

A for loop is used to iterate over a sequence that can be a list, tuple, dictionary,
a set, string, and so on. With this loop, we can execute a set of statements, once for
each item in a list, tuple, array, and suchlike:

Figure 7.8 – Repetitive flow (for loop)
In the preceding diagram, two variables, A and B, are set to have a certain value.
The for loop is run until A is less than B and the loop terminates once the
condition A > B is true. After going through the first iteration of the loop, the
value of A is incremented by the number X.

156 Computational Requirements for Algorithms

Let's try to understand for loops better by going through an example in Python.
For this example, we will perform the following steps:

Step 1: Print the list of fruit names :
#For loop

fruits = ["apple", "mango", "orange", "banana",
 "pomegranate"]
for x in fruits:
 print(x)

Output:
apple
mango
orange
banana
pomegranate

In the for loop, we are using x to represent the positions of the fruit names in
the list fruits. For example, when x = 0, we are referring to fruits[0], which
represents the location of apple. Similarly, fruits[2] = "orange". It is
important to remember that indices in Python start from 0. Here, we start the loop
with x = 0, it prints the first element in the fruits list, then x is incremented to 1,
where the second element in the list is printed out, and so on. The complexity of this
for loop is O(n). The loop executes n times (n being equal to the number in the
list), so the sequence of statements also executes n times. Since we assume that the
statements are of the order O(1), the total time for the loop is n* O(1) = O(n).

Now that we have an idea regarding a for loop, let's move on to learn about nested
for loops and their complexity. So, what are nested loops? A nested loop is a loop
inside a loop. The inner loop will be executed one time for each iteration of the
outer loop'

In the previous example, we just printed out the names of the fruits. Now, let's add
some adjectives to these fruit names by making use of nested for loops.

When the for loop starts, the control of the program is first on the outer for loop.
The first adjective in the adjectives list, in this case tasty, is set into the value of y.

Complexity of algorithms with fundamental control structures 157

After this, the control of the program moves into the inner loop for execution. Here,
each of the values in the fruits list is iterated over one at a time until the end
of the list. x holds the value of apple in the first iteration of the inner for loop
followed by the execution of print(y, x), which outputs tasty apple and
moves to the next value in the fruits list. The control of the program is moved
back to the outer loop once the execution of the inner loop is complete, where the
next value in the adjectives list is set as the value of y and the inner loop executes
again, leading to the values to be printed as displayed in the output:

#Nested for loop

fruits = ["apple", "mango", "orange", "banana",
 "pomegranate"]
adjectives = ["tasty", "juicy", "fresh"]

foryin adjectives:
 for x in fruits:
 print(y, x)

Output:
tasty apple
tasty mango
tasty orange
tasty banana
tasty pomegranate
juicy apple
juicy mango
juicy orange
juicy banana
juicy pomegranate
fresh apple
fresh mango
fresh orange
fresh banana
fresh pomegranate

158 Computational Requirements for Algorithms

In the case of nested for loops, the complexity of the first loop is O(n) and that
of the second loop is O(m). Since we do not know which one is bigger (for our
example, we know that the inner loop was bigger), we can say that the complexity is
O(n+m). This can be written as O(max (n,m)).

• Repeat-While Structure – While loop:

With the while loop, we can execute a set of statements if a certain condition is true,
until it stops being true:

Figure 7.9 – Repeat-While structure (while loop)
Let's try to understand how to implement a while loop in Python. We will perform
the following steps for this example:

Step 1: Set an index to a constant value.

Step 2: Print an index until a certain criterion is satisfied.

Step 3: Increment the index:
#While loop

i = 1
while i < 10:
 print("Step: " + str(i) + " The condition is
 satisfied")
 i += 1

Complexity of common search algorithms 159

Output:
Step: 1 The condition is satisfied
Step: 2 The condition is satisfied
Step: 3 The condition is satisfied
Step: 4 The condition is satisfied
Step: 5 The condition is satisfied
Step: 6 The condition is satisfied
Step: 7 The condition is satisfied
Step: 8 The condition is satisfied
Step: 9 The condition is satisfied

As regards the preceding example, we set the index i = 1 and use a while loop to
print the statements telling us the step number and whether the condition i < 10
is satisfied. As you can see, the loop ended when the value of i = 10, and hence the
algorithm stops at Step 10.

The complexity of the while loop is O(n). This is because the complexity of
a while loop depends on the loop control variable (which is i for this example)
and how this variable is changing because the number of times the statements inside
a loop get executed are dependent on this variable's behavior. For our example
(above), the index i is being incremented linearly, in other words, the value of i
increases by 1 for every step taken by the algorithm.

Now that we have learned about the complexity of common control structures and how
the complexity is calculated, we will move on to study the complexity of common search
algorithms in the next section.

Complexity of common search algorithms
Searching is a technique of selecting a certain portion of a dataset based on a certain set
criterion. We use search algorithms in our day-to-day life when we search for something
on the web that meets a certain word or phrase of our choice. Hence, to be able to search
a data structure for required data is crucial in developing different kinds of applications.

In this section, we will discuss two search algorithms that are used in Python:

• Linear search algorithm

• Binary search algorithm

160 Computational Requirements for Algorithms

Linear search algorithm
This is the simplest kind of search algorithm to a sequential search problem. It simply
checks the items in sequence until the desired item is found. This kind of search algorithm
has already been illustrated using Example 2 (where we calculate the execution time of
an algorithm). Let's look at a similar example to reinforce it, but this time we will write
a function to carry out the linear search.

What is a Python function?

A function is a chunk of code that runs only when it is called. The user can pass inputs,
known as parameters, into the function and then the function is executed to return
a result.

For this example, we will be doing the following:

Step 1: Write a function that contains a predefined set of lists of numbers.

Step 2: Pass an input (number to compare to the list) into this function.

Step 3: Print out the results.

This will return True if there is a match.

This will return False if there is no match:
def linear_search(input):
 lists = [1, 2, 3, 4, 5, 6, 7, 8]
 number = int(input)

 for i in range(len(lists)):
 if lists[i] == number:
 print("True", end=' ')
 else:
 print("False", end=' ')
 print()

INPUT = input("Please input a number of your choice: ")
linear_search(INPUT)

Output:
Please input a number of your choice: 5
False False False False True False False False

Complexity of common search algorithms 161

Now that we know how a linear search algorithm works, let's consider the best-, worst-,
and average-case scenarios:

• Best Case: This is the case that leads to the minimum number of steps executed.
In the case of a linear search, the best-case scenario occurs when the target value
(value that we are looking for) is present at the first index (0). The number of steps
executed in this scenario is 1, hence the time complexity is a constant and the Big-O
notation is O(1).

• Worst Case: This is the case when the algorithm takes the maximum number of
steps and, hence, the maximum amount of time. This scenario occurs when the
algorithm is searching for an element that is present at the last index (n, let's say).
The time complexity for this case will be O(n) since the algorithm needs to take n
steps (increasing linearly) before its termination.

• Average Case: The average case time can be found by dividing all the possible
case timings (best and worse) by the number of cases. Hence, the average time
complexity for a linear search is O((n+1)/2).

Now that we have learned about best-, average-, and worst-case scenarios for linear
search algorithms, let's learn about what these scenarios will be like for a binary search
algorithm.

Binary search algorithm
This search algorithm requires a sorted sequence of a list and is based on the divide
and conquer philosophy. It checks for the value in the middle of the list, repeatedly
discarding the half of the list that contains values that are either all larger or all smaller
than the desired value. If the midpoint contains the target, the algorithm immediately
returns true. If this is not the case, then we determine if the target is less than the
element at the midpoint or greater. If it is less, the high marker is adjusted to be one less
than the midpoint, and if it is greater, we adjust the low marker to be one greater than
the midpoint. In the next iteration of the loop, the only portion of the sequence that is
considered is the elements between the low and high markers. This process is repeated
until we find the target element, or the low marker becomes greater than the high marker.
This is the termination condition and occurs when the target element is not found in the
sorted sequence.

Let's look at an example to make this clearer. We will perform the following steps to come
up with an algorithm:

list = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

162 Computational Requirements for Algorithms

It is important to remember that the list needs to be sorted before a binary search is
carried out:

Step 1: Compare the target value with the middle element of the list.

Step 2: If the middle element of the list matches the target element, then the index
of the middle element is returned.

Step 3: If the target value is greater than the middle element in the list, then the
target value can only lie in the right sub-list after the middle element.

Step 4: Otherwise (if the target value is less than the middle element), we look for
a match in the sub-list that lies toward the left of the middle element:

Returns index of target (x) if present in the list
def binary_search(list, l, r, target_value):
 # Check base case
 if r >= l:

 mid_index = l + (r - l) // 2

 # If target element matches with the mid-element
 # of the list
 if list[mid_index] == target_value:
 return mid_index

 # If element is smaller than mid-element, then it
 # can only be present in left sublist
 elif list[mid_index] > target_value:
 return binary_search(list, l, mid_index - 1,
 target_value)

 # Else the element can only be present in right
 # sub-list
 else:
 return binary_search(list, mid_index + 1, r,
 target_value)

 else:
 # Element is not present in the array
 return -1

Test list

Complexity of common search algorithms 163

list = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
target_value = 100

Function call
result = binary_search(list, 0, len(list) - 1, target_
 value)

if result != -1:
 print("Target element is present at index " +
 str(result) + " of the list")
else:
 print("Target element is not present in list")

Output:
Target element is present at index 9 of the list

Now that we know how a binary search algorithm works, let's consider the best-, worst-,
and average-case scenarios:

• Best Case: This is the case that leads to the minimum number of steps executed.
In the case of a binary search, the best-case scenario occurs when the target value
(value that we are looking for) is present at the middle index of the list we are
comparing with. The time complexity is a constant and the Big-O notation is O(n).

• Worst Case: This is the case when the algorithm takes the maximum number of
steps and, hence, the maximum amount of time. This scenario occurs when the
algorithm is searching for an element that is not present in the list where we are
looking to locate the target element. The time complexity for this case will be O(log
n). This Big-O notation can be explained by the fact that the search keeps breaking
the list into halves in each iteration. How many times do we have to divide a sub-list
by 2 until we get our desired index? We can write this mathematically as follows:

Taking a logarithm on both sides, we get: k = log(n)/log(2).

 In the preceding computations, we have the following:
• n is the number of terms in the list.

• k is the number of times the sub-lists are divided into further smaller sub-lists.

𝑛𝑛
2𝑘𝑘 = 1

 = 2

164 Computational Requirements for Algorithms

• Average Case: The average case time can be found by dividing all the possible
case timings (best and worse) by the number of cases. Hence, the average time
complexity for a linear search is O(log n):

Figure 7.10 – Best, worst, and average case comparison for linear and binary searches

The advantage of binary searches is that not every item in the sequence must be examined
before determining that the target is not in the list, which is the worst-case scenario. Since
the sequence is sorted first, before proceeding with the binary search, each iteration of the
loop can eliminate half of the values. In this way, the input size (the size of the list used for
comparison) is repeatedly reduced by half during each iteration of the loop.

The binary search algorithm is more efficient as compared to a linear search since its
worst-case time complexity is O(log n), which is better than O(n) for a linear search.

In this section, we learned about the computational complexity of the two types of
search algorithms used in Python, namely, linear and binary search algorithms. We also
compared their best, worst, and average time complexity case scenarios.

Common classes of computational complexity
In this section, we will learn about some other common classes of computational
complexity other than the constant, linear, quadratic, and suchlike complexities that have
been discussed in the previous sections.

"Pretty well everybody outside the area of computer science thinks that if
your program is running too slowly, what you need is a faster machine."

– Rod Downey and Mike Fellows
However, this is not the case, since some problems might require a brute-force search
through a large class of cases that exponentially increases the number of steps required
to solve the problem. An important distinction is often made between a tractable and
intractable problem:

• Tractable problems make use of algorithms that take polynomial time (P) for
their execution – time complexity is of the order O(nc), where c is any constant that
belongs to the natural numbers.

Common classes of computational complexity 165

Feasibly decidable kinds of problems are problems that can be solved by
a conventional Turing machine in a number of steps that is proportional to
a polynomial function of the size of the input.

• Intractable problems make use of algorithms that require exponential time for their
execution – time complexity is of the order O(2n) or similar.

While this is the theoretical distinction, this might not always correspond to which
problems can be solved faster in practice. For example, an exponential algorithm running
in time 2n/100 might behave better than a polynomial algorithm running in time n1000.
The exponential functions might be faster for a very small number of steps; however, the
polynomial time complexity will be faster when n is very large. Going back to Figure 6.4,
we can see that the step size (and hence the time complexity) increases very rapidly for an
exponential as compared to polynomial algorithms.

To put things into perspective, let's compare the run times of polynomial and exponential
time complexities for different sizes of input and a step size of 1010 per second:

Figure 7.11 – Time taken by different algorithms for different step sizes

A third class of complexity class exists, called the NP type – non-deterministic
polynomial time. This type consists of the problems that can be correctly decided by
some computation of a non-deterministic Turing machine in a number of steps that is
a polynomial function of the size of the input. These are the types of problems that are
verifiable in polynomial time.

166 Computational Requirements for Algorithms

A famous conjecture states that P is properly contained in NP – in other words, P Í NP:

Figure 7.12 – P is properly contained in NP

Demonstrating the non-coincidence of these complexity classes remain important open
problems in complexity theory.

In this section, we learned about some more complexity classes, including P and NP.
We also looked at what tractable and intractable problems are and how exponential time
complexity problems are computationally inefficient when the input size increases.

Summary
In this chapter, we learned about computer algorithms, and their complexities (time and
space). We also discussed how these complexities vary based on the size of the input.
We investigated the different types of time complexities, including constant, linear,
quadratic, cubic, and exponential, along with their Big-O notations. We then looked into
the complexities of fundamental control structures and discussed these with regard to
three fundamental flow types – sequential, selection, and repetitive flow. The complexities
of linear and binary search algorithms were discussed in addition to the best-, worst-,
and average-case scenarios. Toward the end, we learned about some other kinds of time
complexity types, such as P and NP.

With the knowledge acquired in this chapter, you will be well equipped to choose the right
kind of algorithm to solve a certain problem. In the next chapter, we will be looking into
terminology and notation for trees, graphs, and networks, as well as directed graphs and
networks.

References 167

References
• Computational Complexity Theory (Stanford Encyclopedia of Philosophy):

https://plato.stanford.edu/entries/computational-
complexity/, Accessed: 2020-05-17.

• Computational Complexity Tutorial, COMSOC 2017, Ronald de Hann,
URL: https://staff.science.uva.nl/u.endriss/teaching/
comsoc/2017/slides/comsoc-complexity-tutorial-2017.pdf,
Accessed: May 17, 2020.

https://plato.stanford.edu/entries/computational-complexity/
https://plato.stanford.edu/entries/computational-complexity/
https://staff.science.uva.nl/u.endriss/teaching/comsoc/2017/slides/comsoc-complexity-tutorial-2017.pdf
https://staff.science.uva.nl/u.endriss/teaching/comsoc/2017/slides/comsoc-complexity-tutorial-2017.pdf

8
Storage and Feature

Extraction of
Graphs, Trees, and

Networks
The structures we will learn about in this chapter all stem from the idea of a graph, which
is a pair of sets of nodes (called vertices) and connections (called edges) linking nodes
together. As we will see in this chapter and the following chapters graphs, and their
variations are useful for modeling many real situations and solving practical problems
in computer and data sciences.

The following topics will be covered in this chapter:

• Understanding the terminology and notation of graphs, trees, and networks

• An overview of some ways graph and network models are used in real problems

• Efficient storage of graphs of networks in Python

• Using Python to extract features of graphs or networks

170 Storage and Feature Extraction of Graphs, Trees, and Networks

By the end of the chapter, you should be able to differentiate between graphs, trees,
networks, and directed versions of them, be familiar with common applications of these
structures as models for practical problems, efficiently store these structures in computer
memory with Python, and use linear algebra to determine certain features within these
structures.

Important Note
Please navigate to the graphic bundle link to refer to the color images for
this chapter.

Understanding graphs, trees, and networks
We will start by defining graphs mathematically, along with any other related definitions,
before moving on to consider common ideas about trees, networks, and directed graphs.

Definition: graph
A graph G has two parts. First, V = {v1, v2, …, vk} is a set of vertices, also known as nodes.
Second, E is a set of edges, each of which connects some pairs of nodes. We represent
a graph as G = (V, E).

An edge is represented mathematically as a set made up of the two vertices it connects.
If there is an edge connecting nodes vi and vj, we will call this edge eij = {vi, vj} and we say
it is incident to vertices vi and vj.

An example of a graph follows with vertices V = {v1, v2, v3, v4, v5, v6} and edges
 E = {e12, e13, e15, e23, e24, e26, e34, e35, e45}:

Figure 8.1 – A graph with six vertices, and nine edges connecting them

Understanding graphs, trees, and networks 171

We can see, for example, the edge connecting vertex 3 (v3) to vertex 4 (v4) is called e34.
Note that, in general, it is common to leave out the edge labels from diagrams of graphs,
but we can easily determine the name of each edge depending on which two vertices the
edge connects.

Definition: degree of a vertex
A vertex vi has degree n if it has exactly n edges incident to it. Mathematically, we write
d(vi) = n.

In other words, the degree of a vertex tells us how many edges are connected to the vertex.
In the next example, we will count the degrees of each vertex in the graph from Figure 8.1.

Example: degrees of vertices
Consider the graph in Figure 8.1. We can easily find the degree of each vertex by counting
the number of edges connected to it. We will find the following:

d(v1) = 3, d(v2) = 4, d(v3) = 4

d(v4) = 3, d(v5) = 3, d(v6) = 1

Notice the sum of the degrees of all the vertices is 3 + 4 + 4 + 3 + 3 + 1 = 18, which
happens to be two times the number of edges in the graph. It turns out this is true in
general, as we'll prove next.

Theorem: sum of degrees
The sum of the degrees of all vertices in a graph G = (V, E) equals twice the number of
edges in G, 2|E|. If the number of vertices is |V| = n, this means

∑𝒅𝒅(𝒗𝒗𝒊𝒊)
𝒏𝒏

𝒊𝒊=𝟏𝟏
= 𝒅𝒅(𝒗𝒗𝟏𝟏) + 𝒅𝒅(𝒗𝒗𝟐𝟐) +⋯+𝒅𝒅(𝒗𝒗𝒏𝒏) = 𝟐𝟐|𝑬𝑬| .

Proof: An edge eij adds 1 to the degree of vi and adds 1 to the degree of vj. Therefore, each
edge adds 2 to the sum of all degrees.

This fact is something we will use later in the chapter when we will store graphs and
related models in Python to check that our data structure makes sense.

Next, we'll consider a special sort of graph where there is only one way to traverse are
called paths, which we define next.

172 Storage and Feature Extraction of Graphs, Trees, and Networks

Definition: paths
A path is a graph P = (V, E) where V = {v1, …, vn} and E = {e12, e23, …, en-1, n}. The vertices v1
and vn are called endpoints of the path.

Here is an example of a path that is a subgraph of G from Figure 8.1, where V = {v1, v2, v3,
v4, v5} and E = {e12, e23, e34, e45}:

Figure 8.2 – On the left is the graph G; on the right is a path P taken from G

Next, we'll look at an idea closely related to paths – a graph where the starting vertex
connects to the ending vertex, forming what is called a cycle.

Definition: cycles
If P = (V, E) is a path, then a cycle is a graph with the same vertex set while the edge set is
E U {en1}. In other words, it is a path with one additional edge connecting the endpoints.

The following diagram, Figure 8.3, shows a cycle that is a subgraph of the graph G from
Figure 8.1:

Figure 8.3 – A cycle that is a subgraph of G

Understanding graphs, trees, and networks 173

As we mentioned before, a cycle is just like a path except the starting and ending vertices
are connected. In this case, that means we added the edge e15 connecting vertex 1 to vertex
5 to the second graph from Figure 8.2.

With the idea of a cycle in hand, we can define trees, which are used anytime we want to
create a hierarchy of objects such as operating systems, graphics, database systems, and
computer networking.

Definition: trees or acyclic graphs
A tree or acyclic graph is a graph G = (V, E) that has no cycles.

The graph in Figure 8.4 is an example of a tree:

Figure 8.4 – An acyclic graph (otherwise known as a tree)

Notice there is no way to form a path from a vertex to itself without traversing the same
edge more than once. This is what it means to not have a cycle.

Next, we define networks, which are like graphs, but the edges each have weights that may
correspond to distances between cities in Google Maps, the cost of traveling from one
vertex to another given fuel prices, or the weights of a deep learning structure like a neural
network. The mathematical definition abstracts away those specifics so we can focus on
the underlying ideas, which will then apply to many different problems.

174 Storage and Feature Extraction of Graphs, Trees, and Networks

Definition: networks
A network consists of three parts, N = (V, E, W). As with graphs, V is the set of edges and
E is the set of edges. In addition, each edge has a real-valued weight. Mathematically,

we will write the set of weights as 𝑊𝑊 = {𝑤𝑤𝑖𝑖𝑖𝑖 ∈ ℝ ∶ 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸} and the weight of edge eij will
be denoted by wij.

The following figure shows an example of a network with the same vertex and edge sets as
the graph in Figure 8.1 but with weighted edges:

Figure 8.5 – A network with 6 vertices and 10 weighted edges

Just like the graph in Figure 8.1, this network has the vertex set V = {v1, v2, v3, v4, v5, v6} and
the edge set E = {e12, e13, e14, e15, e23, e24, e26, e36, e46}, but it also has a set of weights given in
the figure:

W = {w12, w13, w14, w15, w23, w24, w26, w36, w46} = {2, 1, 4, 1, 1, 1, 1, 2, 2}.

The weights of a network may correspond to many different things in different
applications, but some common examples are the distance between vertices, the capacity
of the links to carry traffic between vertices, or the cost of making a connection between
vertices. We will discuss these applications further in the next section.

Next, we'll continue on to directed versions of graphs where the edges do not simply
connect vertices but have a specific direction from one vertex to another.

Understanding graphs, trees, and networks 175

Definition: directed graphs
A directed graph, or digraph, G = (V, E) is a set of vertices V and a set of
directed edges E, which is a subset of the Cartesian product of V with itself,
𝐸𝐸 ⊂ 𝑉𝑉 × 𝑉𝑉 = {(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) ∶ 𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉} .
In contrast to (undirected) graphs, the edges here are ordered pairs, not just sets. The
reason is that edges in this context have a direction. We call them directed edges.

In this context, e12 = (v1, v2), an edge going from v1 to v2, but not the other direction.
An edge going from v2 to v1 would be written e21 = (v2, v1). In short, we have eij ≠ eji when
we consider a directed graph. We will use arrows to the edges in diagrams of directed
graphs. We can see an example in the following figure:

Figure 8.6 – A directed graph with 6 vertices and 11 directed edges

This digraph has the same six vertices as the previous graphs and its set of directed edges
is E = {e13, e21, e26, e35, e42, e43, e45, e51, e53, e54, e66}

These are directed edges, so in some cases, we have two edges—one in each direction—
between two vertices; for example, e35 and e53.

We discussed graphs and then generalized that idea by allowing edges to have directions.
Now, we have talked about networks, which are like graphs but with weights. In a similar
way, we can also allow the weighted edges of networks to become directed, creating what
are called directed networks.

176 Storage and Feature Extraction of Graphs, Trees, and Networks

Definition: directed networks
A directed network N = (V, E, W) is a network with directed edges.

Example: directed network
In this case, |W| = |E| and W contains a weight for each directed edge, so the weight of
edge e35 may be different than the weight of edge e53. For example, the edge going from
vertex 3 to vertex 5 has weight w35 = 2, but the weight of the edge going from vertex 5 to
vertex 3 is w53 = 1, so the weights need not be the same in each direction, as we can see in
Figure 8.7:

Figure 8.7 – A directed network with 6 vertices and 11 directed, weighted edges

In the preceding figure, we have a directed network where each directed edge has a weight.
The vertex set and edge set are the same as in Figure 8.6, but here, we also have the set
of weights,

W = {w13, w21, w26, w35, w42, w43, w45, w51, w53, w54, w66} = {2, 1, 2, 2, 2, 3, 4, 3, 1, 1}

We will consider directed graphs and networks in some of the upcoming problems, but
we will speak in the context of graphs and networks, not their directed variants unless it is
otherwise specified.

Now that we have defined what graphs, trees, networks, and their directed variants are,
we'll now consider a bit of terminology associated with these graph-based models in the
next two definitions.

Understanding graphs, trees, and networks 177

Definition: adjacent vertices
In a graph G = (V, E), two vertices are called adjacent if an edge connects them. In other
words, vi and vj are connected if eij ∈ E.

For example, in Figure 8.1, vertex v3 is adjacent to v1, v2, v4, and v5 because there are edges
attaching v3 to each of those four vertices. However, it is not adjacent to v6 since there is no
edge connecting v3 to v6.

Lastly, we'll consider the idea of connected graphs and connected components of graphs.

Definition: connected graphs and connected
components
Let G = (V, E) be a graph. If G contains a path between every pair of vertices in V, then G
is called a connected graph.

All the preceding figures are connected graphs because you can traverse some sequence of
edges of the graphs to travel from any one vertex to any other vertex. This does not mean
any two vertices are adjacent. Indeed, vertices v4 and v1 in Figure 8.1 are not adjacent to
one another, but some paths exist in G between them—for example, from v4 to v5 to v1.

If a subgraph G' = (V', E') of the graph G is connected and none of its vertices are
connected to vertices outside G, it is called a connected component of the graph G:

Figure 8.8 – A non-connected graph G with two connected components

178 Storage and Feature Extraction of Graphs, Trees, and Networks

In the preceding figure, there are two subgraphs of G we would like to consider:

1. G1 = ({v1, v2, v6}, {e12, e26})

2. G2 = ({v3, v4, v5}, {e34, e35, e45})

If we choose a vertex from G1, there are no paths in G between this vertex and a vertex
in the remainder of G (that is, in G2). The same would be true if we were to start with
a vertex from G2 and try to find a path to a vertex in G1. This means G1 and G2 are
connected components.

We can note G1 happens to be a tree, but not G2 since it contains a cycle.

These ideas of connectedness and connected components also apply to networks. For
directed graphs of networks, these notions also exist, but a path in each direction—from vi
to vj and from vj to vi—must exist between each pair of vertices for the directed graph
or network to be called connected.

In this section, we have seen many new terms and structures—the basis for all of them
is the graph, which is simply a set of vertices and edges connecting some of the vertices
together. Then, we saw that trees are graphs that include no cycles and networks are
graphs where each edge has a weight. Next, networks were shown to be like graphs but
with the addition of numerical weights for each edge. Lastly, we looked at the ideas of
directed graphs or networks where the edges have a specific direction. Rather than an
edge simply attaching vertex v2 to vertex v3, we have directed edges that go from v2 to v3
or go from v3 to v2 in directed graphs and networks. Throughout, we also encountered the
ideas of degrees, paths, cycles, and connected graphs.

With all these new ideas in mind, let's take a look at some of the applications of these ideas
in the real world!

Using graphs, trees, and networks
Graphs and the other similar structures we introduced in the previous section are versatile
modeling tools. This section will be an overview of some of the most common areas where
these structures are used in discrete mathematics. Note that some of these topics will be
explored much more deeply in some forthcoming chapters.

In Chapter 9, Searching Data Structures and Finding Shortest Paths, we will learn how to
search graphs (especially trees) to find certain features or characteristics. One application
of these searches is in scheduling problems. For example, consider a directed graph where
each vertex represents a task that needs to be done to complete a large project where a
directed edge between task A and task B means task A must be completed before task B.
In other words, the directed edge represents a dependency.

Using graphs, trees, and networks 179

Clearly, there should be no cycles since that would lead to an infinite loop of tasks to
complete! This means the directed graph would be a directed tree. There is a whole area of
study of directed trees, which are also commonly called directed acyclic graphs (DAGs).

Searching such a directed tree can allow us to sort the tasks into orderings that allow
the whole project to be completed efficiently. For example, consider the following
figure, which shows a directed graph with the tasks involved in washing a car and their
dependencies:

Figure 8.9 – A directed graph for washing a car

This figure sorts the tasks into a very easily readable structure that clearly shows the steps
in the project. In general, we may have many tasks, each with a list of dependent tasks
that must occur first. If they are not so neatly sorted or if a project is especially complex,
scheduling the tasks can seem like a nearly impossible task. Searching these graphs allows
such ordering, which is of tremendous use in project management.

180 Storage and Feature Extraction of Graphs, Trees, and Networks

Chapter 9, Searching Data Structures and Finding Shortest Paths, will look at the
problems of finding minimum-weight paths between vertices in a network under various
constraints. This is helpful for finding minimum-distance driving directions between
two locations if weights represent distances between vertices, which may be cities or road
intersections. In the following figure, we see the shortest path from v1 to v2 is highlighted
in orange:

Figure 8.10 – The shortest path from v1 to v2

Note that there are many paths from v1 to v2:

• P1 = ({v1, v2}, {e12}), distance = w12 = 4

• P2 = ({v1, v2, v3}, {e13, e23}), distance = w13 + w23 = 3

• P3 = ({v1, v2, v3, v4, v5}, {e13, e24, e35, e45}), distance = w13 + w24 + w35 + w45 = 5

These are just a few of the paths from v1 to v2, but notice P2, the one highlighted orange in
Figure 8.10, is the shortest path with a total distance of 3 units.

Another problem related to pathfinding is routing traffic through a computer network—
note the difference in the mathematical definition of a network given above and a network
of computers. Networks in the mathematical sense sometimes model computer networks,
but they can also model other things such as maps with roads connecting cities or an
electrical grid connecting to all the customers in a geographical region.

One application of this problem is to find the cheapest way for an ISP to lay fiber optic
cables to connect all the neighborhoods of customers they want to serve. We can see an
example of a minimum spanning tree (MST) in the following figure:

Storage of graphs and networks 181

Figure 8.11 – On the left is N with the minimum spanning tree highlighted.
The MST itself is on the right

We see that the MST is a connected subnetwork N' = (V, E', W') with the same vertex set
as the full network N but with a minimum sum of weights. The sum of weights on the left
is 15, but the sum of weights on the right is only 5.

As we have seen in this section, graphs, trees, and networks can model many types of
problems in scheduling, routing problems, and minimum spanning trees. This is only
a small sampling of the common uses of these mathematical structures.

We will dive more fully into these applications in the next three chapters, but we cannot
simply look at pictures for graphs modeling real-life problems. They tend to be quite large
with hundreds or thousands of vertices and edges. The complexity of large graphs quickly
exceeds our ability to analyze them mentally. So, before we can accomplish useful analysis,
we need to learn how to store graphs, trees, and networks in NumPy arrays, which we will
learn about next.

Storage of graphs and networks
In this section, we'll learn about a few ways graph structures are commonly stored in
computer memory and their benefits and drawbacks, including adjacency lists, adjacency
matrices, and weight matrices.

Definition: adjacency list
For a graph G = (V, E), an adjacency list is an enumeration of the edges in a graph. In
computer memory, we would store it as a list of pairs of vertex numbers.

182 Storage and Feature Extraction of Graphs, Trees, and Networks

Definition: adjacency matrix
For a graph G = (V, E), an adjacency matrix for a graph is a binary matrix A = (aij). If eij ∈
E, then the number in row i and column j is aij = 1. Otherwise, it is 0.

In other words, the value in the ith row and jth column of the adjacency matrix A, aij, is 1 if
vertices vi and vj are adjacent. Otherwise, it is 0.

Example: an adjacency list and an adjacency matrix
For the graph G in Figure 8.1, we previously listed the edges as E = {e12, e13, e15, e23, e24, e26,
e34, e35, e45}. The adjacency list will simply be a list of each of these edges by the vertices
they connect:

L1 = [[1, 2], [1, 3], [1, 5], [2, 3], [2, 4], [2, 6], [3, 4], [3, 5], [4, 5]]

While this is quite compact, it actually contains enough to describe the whole graph. The
only risk is that a vertex with degree 0 will not be represented in the adjacency list. In
most applications, this is unimportant. Vertices with no edges attached are not typically
very interesting, but a separate list of vertices can be stored separately if it is important to
the problem you are trying to solve.

Probably more common are adjacency matrices. The following matrix is the adjacency
matrix for the graph in Figure 8.1. Note that v1, …, v6 are not actually part of the matrix
but are placed here as labels:

Figure 8.12 – An adjacency matrix for the graph in Figure 8.1

Note, for example, that the number in the 4th row, 5th column is 1, which means v4 is
adjacent to v5. To fill in the rest of the matrix, we use this same sort of logic to place a 1
in row i and column j if vertex vi is connected to vertex vj in the graph. All the rest of the
numbers in the matrix will be zeros.

Storage of graphs and networks 183

We can notice a few features of the adjacency matrix:

• The third row [1 1 0 1 1 0] means that v3 is adjacent to v1, v2, v4, and v5 as we see in
the preceding graph. The third column [1 1 0 1 1 0]T is the transpose of the third
row because it represents the same thing – that v3 is adjacent to v1, v2, v4, and v5.

• The transpose relationship is clearly true for the ith row and ith column for any i.

• The diagonal is filled with zeros since no vertex is connected to itself.
Self-connections are called loops, but our graph does not have any,
so we can say G has no loops.

• The sum of the fifth row 1 + 0 + 1 + 1 + 0 + 0 = 3 indicates the degree of v5 is 3,
d(v5) = 3. In general, the sum of any row or column represents the degree of the
corresponding vertex.

Notice each row and column have this property, so the transpose of A1 is the same as A1.
Mathematically, we would write A1T = A1. In other words, aij = aji for each i and j. Such
a matrix is called a symmetric matrix. All adjacency matrices for non-directed graphs
are symmetric.

Example: adjacency matrix for a non-connected graph
We can similarly write an adjacency matrix for the graph G in Figure 8.8 as follows:

Figure 8.13 – An adjacency matrix for the graph in Figure 8.8

Once again, we have a symmetric matrix, which we showed must occur in an adjacency
matrix. Here, we can quickly find the degree of each vertex by simply finding the row sums:

d(v1) = 1, d(v2) = 2, d(v3) = 2

d(v4) = 2, d(v5) = 2, d(v6) = 1

184 Storage and Feature Extraction of Graphs, Trees, and Networks

There is not a way to determine from observation that adjacency matrix A2 corresponds to
a graph that is not connected, but we will see in the next section that there is a way to use
A2 to determine this.

Definition: adjacency matrix for a directed graph
For a directed graph G = (V, E), an adjacency matrix A = (aij) is a binary matrix where
aij = 1 if there is a directed edge from vertex vi to vertex vj—that is, if eij ∈ E. All other
elements of A are zeros.

Since eij ∈ E does not mean eji ∈ E for directed graphs, there is no reason to assume aij = aji
as in adjacency matrices of (undirected) graphs, so adjacency matrices for directed graphs
are not symmetric in general.

Important note
In some books, authors define adjacency matrices for directed graphs
differently. They let aij = 1 if there is an edge from vj to vi rather than the
convention we have used above.

In the next example, we will find an adjacency matrix for a directed graph.

Example: adjacency matrix for a directed graph
The following matrix is the adjacency matrix for the directed graph G in Figure 8.6:

Figure 8.14 – An adjacency matrix for the graph in Figure 8.6

We can notice a few features of the adjacency matrix:

• The third row [1 1 0 1 1 0] means there are directed edges from v3 to each v1, v2, v4,
and v5 as we see in the preceding graph. The sum of the row is the number of edges
leaving from v3.

• The third column [1 0 0 1 1 0] means there are directed edges from each v1, v4, and
v5 to v3. The sum of the column is the number of edges coming into v3.

• a66 = 1 is on the diagonal since there is a loop going from v6 to itself.

Storage of graphs and networks 185

Note that, in contrast to the adjacency matrix we saw previously for an undirected graph,
the adjacency matrix of this directed graph is not symmetric since we have directed edges.

We will come back to this example in the next section and use it to find some features of
the directed graph corresponding to the adjacency matrix.

Example: storing an adjacency matrix in Python
To store an adjacency matrix in Python, it is smart to use a NumPy array as we saw in
Chapter 6, Computational Algorithms in Linear Algebra. In the following code, we will
store the adjacency matrices for the graphs in Figure 8.1 and Figure 8.8 as well as the
directed graph in Figure 8.6:

import numpy

Create an adjacency matrix for the graph in Figure 8.1
A1 = numpy.array([[0, 1, 1, 0, 1, 0], [1, 0, 1, 1, 0, 1],
 [1, 1, 0, 1, 1, 0], [0, 1, 1, 0, 1, 0],
 [1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0]])

Create an adjacency matrix for the graph in Figure 8.8
A2 = numpy.array([[0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1],
 [0, 0, 0, 1, 1, 0], [0, 0, 1, 0, 1, 0],
 [0, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0]])

Create an adjacency matrix for the directed graph in Figure
 # 8.6
A3 = numpy.array([[0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1],
 [0, 0, 0, 0, 1, 0], [0, 1, 1, 0, 1, 0],
 [1, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1]])

print the adjacency matrices
print("A1 =", A1)
print("\n A2 =", A2)
print("\n A3 =", A3)

This code outputs the matrices A1, A2, and A3 that we wrote mathematically previously:

A1 = [[0 1 1 0 1 0]
 [1 0 1 1 0 1]
 [1 1 0 1 1 0]
 [0 1 1 0 1 0]
 [1 0 1 1 0 0]

186 Storage and Feature Extraction of Graphs, Trees, and Networks

 [0 1 0 0 0 0]]

 A2 = [[0 1 0 0 0 0]
 [1 0 0 0 0 1]
 [0 0 0 1 1 0]
 [0 0 1 0 1 0]
 [0 0 1 1 0 0]
 [0 1 0 0 0 0]]

 A3 = [[0 0 1 0 0 0]
 [1 0 0 0 0 1]
 [0 0 0 0 1 0]
 [0 1 1 0 1 0]
 [1 0 1 1 0 0]
 [0 0 0 0 0 1]]

As we see, the outputs are the exact adjacency matrices we found in the preceding
examples, but they are now stored in computer memory in these NumPy arrays.

We will revisit these examples in the next section and use it to find some features of the
graphs from Figure 8.1, Figure 8.8, and Figure 8.6 corresponding with the adjacency
matrices A, B, and C.

Efficient storage of adjacency data
An adjacency matrix is a little redundant and can, therefore, take up more memory than
necessary. There are a few ways developers deal with this inefficiency.

Since adjacency matrices are always symmetric, sometimes code that uses adjacency
matrices stores only the main diagonal of the matrix (a11, a22, …, ann) and elements
below the diagonal (aij where j ≤ i). If we need an element that should be stored above
the diagonal, say a24, we can use symmetry to know it is equal to a42, which is below the
diagonal. In this way, we do not actually need to store a24 or any other element above the
diagonal when the inefficiency is significant. When there are no loops in the graph, the
diagonal of zeros also does not need to be stored.

These issues are unimportant if the amount of memory used is small, but for very large
graphs, such as the web pages (vertices) and their link structure (edges) from a large
website such as Reddit, the storage required can be very large, so cutting the storage space
in half can be significant.

Storage of graphs and networks 187

Further, if a graph has far more vertices than edges |V| >> |E|, an adjacency matrix will
largely be filled with zeros. To be specific, the matrix is of size |V|2 and there are 2|E|
ones in the matrix, meaning there would be |V|2 – 2|E| zeros, which is a big number
if |V| >> |E|. Storing all these zeros uses a lot of memory, often for not much benefit.
In this situation, adjacency lists are sometimes preferred, as we need to store only 2|E|
values, the two endpoints of each edge.

Next, let's look at the corresponding ideas for networks.

Definition: weight matrix of a network
For a network N = (V, E, W), a cost matrix is a matrix W = (wij) – that is, where the
number in row i and column j is the weight wij of the edge connecting vertices vi and vj
if the edge exists. If there is no edge between vi and vj, we set wij = 0 in the matrix.

Since it may be the case that the weight of the edge from vertex vi to vertex vj is not equal
to the weight of the edge from vertex vj to vertex vi in directed networks (or maybe the
second edge does not even exist!), there is no reason to assume wij = wji as in weight
matrices of (undirected) networks, so weight matrices for directed networks are not
symmetric in general.

Important note
In some sources, weight matrices are referred to by various other names
depending on what the networks are being used to model—distance matrices,
cost matrices, or even simply adjacency matrices. We will use a weight matrix
exclusively.

We will consider an example of the weight matrix of a specific network in the next
example.

Example: weight matrix of a network
The weight matrix from the network shown in Figure 8.5 is given here:

Figure 8.15 – A weight matrix for the network in Figure 8.5

188 Storage and Feature Extraction of Graphs, Trees, and Networks

We constructed the matrix by noting, for example, the weight of the edge connecting v1
and v2 is 4, so w12 = w21 = 4, and continuing in the same way to fill in the remainder of the
numbers.

Weight matrices of (undirected) networks share some properties with adjacency matrices
of are symmetric and zeros occur in positions of the matrix corresponding to any two
vertices that are not connected by an edge. That is, vertices that are not adjacent.

Definition: weight matrix of a directed network
For a directed network N = (V, E, W), a cost matrix is a matrix W = (wij) – that is, where
the number in row i and column j is the weight wij of the edge going from vertex vi to
vertex vj if the edge exists. If there is no edge going from vi to vj, we set wij = 0 in the
matrix.

Let's consider an example from a directed network we saw in an earlier section to make
this idea clearer.

Example: weight matrix of a directed network
Let's find the weight matrix for the network shown in Figure 8.7:

Figure 8.16 – A weight matrix for the network in Figure 8.7

We constructed the matrix by noting, for example, the weight of the edge going from v1 to
v3 is 3, so w13 = 3 and continuing in the same way to fill in the remainder of the numbers.
Unlike the undirected network cost matrix, this one is not symmetric since, for example,
w31 = 0 ≠ w13 since there is no edge going from v3 to v1.

Example: storing weight matrices in Python
To store a weight matrix in Python, it is smart to use a NumPy array as we saw in Chapter
6, Computational Algorithms in Linear Algebra. In the following code, we will store the
weight matrices for the network in Figure 8.5 and the directed network in Figure 8.7:

import numpy

Storage of graphs and networks 189

Create a weight matrix for the network in Figure 8.5
W1 = numpy.array([[0, 4, 1, 0, 2, 0], [4, 0, 2, 1, 0, 1],
 [1, 2, 0, 1, 1, 0], [0, 1, 1, 0, 2, 0],
 [2, 0, 1, 2, 0, 0], [0, 1, 0, 0, 0, 0]])

Create a weight matrix for the directed network in Figure 8.7
W2 = numpy.array([[0, 0, 2, 0, 0, 0], [1, 0, 0, 0, 0, 2],
 [0, 0, 0, 0, 2, 0], [0, 2, 3, 0, 4, 0],
 [3, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1]])

Print the weight matrices
print("W1 =", W1)
print("\n W2 =", W2)

And the code has output:

W1 = [[0 4 1 0 2 0]
 [4 0 2 1 0 1]
 [1 2 0 1 1 0]
 [0 1 1 0 2 0]
 [2 0 1 2 0 0]
 [0 1 0 0 0 0]]

 W2 = [[0 0 2 0 0 0]
 [1 0 0 0 0 2]
 [0 0 0 0 2 0]
 [0 2 3 0 4 0]
 [3 0 1 1 0 0]
 [0 0 0 0 0 1]]

As we see, the weight matrices have been stored as NumPy arrays in computer memory
by Python. It is then prepared for analysis with Python.

Now that we have learned how to store graphs as adjacency matrices and networks as
weight matrices, we are prepared to look at some approaches to extract features from
graphs and networks in Python.

190 Storage and Feature Extraction of Graphs, Trees, and Networks

Feature extraction of graphs
In this section, we will learn how to find features of graphs from their adjacency matrices
using some methods from linear algebra we learned in Chapter 6, Computational
Algorithms in Linear Algebra—especially matrix sums and matrix multiplication.
We will learn how to find the degrees of vertices, count the paths between vertices of
a specified length, and find the shortest paths between vertices of graphs.

Degrees of vertices in a graph
In this subsection, we will learn how to find the degrees of vertices with Python. As
we mentioned in the previous section, the row (or column) sums of an adjacency matrix
give the degrees of each vertex.

We do these calculations in Python:

Find the degrees of each vertex of the graph in Figure 8.1

Using column sums
print(numpy.sum(A1, axis=0))

Using row sums
print(numpy.sum(A1, axis=1))

Note that we use the sum() function from NumPy where the first input is the adjacency
matrix A1 of the graph in Figure 8.1 and the second is the axis, which specifies whether it
should sum the rows or sum the columns. In the first one, we use axis=0, so it computes
the column sums. In the second, we use axis=1, so it computes the row sums. The
output follows:

[3 4 4 3 3 1]
[3 4 4 3 3 1]

Of course, the two agree with one another for an undirected graph since their adjacency
matrices must be symmetric. And, these numbers agree with the degrees we found by
inspection. Of course, this counting by inspection for every vertex on a real, large graph
would be infeasible to do manually.

For a directed graph, we must realize the adjacency matrix is constructed differently.
A1 in row i, column j means there is a directed edge going from vertex vi to vertex vj. So,
if we add all the numbers in row i, this will give the number of edges leaving from vi,
sometimes called the out-degree of vi. Practically, we can compute this out-degree for each
vertex by computing row sums.

Feature extraction of graphs 191

In contrast, to find the number of edges entering vj, sometimes called the in-degree of
vj, we need to add up column j. In general, we need to compute column sums to get the
in-degrees of the vertices.

We will implement both for adjacency matrix A3 corresponding to the directed graph in
Figure 8.6 in Python here:
Find out-degrees for each vertex in the directed graph in
 # Figure 8.6
outdegrees = numpy.sum(A3, axis=1)
print(outdegrees)

Find in-degrees for each vertex in the directed graph in
 # Figure 8.6
indegrees = numpy.sum(A3, axis=0)
print(indegrees)

print(numpy.sum(outdegrees))
print(numpy.sum(indegrees))

This code gives the out-degrees and then the in-degrees for the vertices:
[1 2 1 3 3 1]
[2 1 3 1 2 2]
11
11

In this case, we computed the row and column sums just like we did for the preceding
undirected graph, but here, there is a different interpretation when we are considering
directed graphs. The in-degree and out-degree of each vertex differ in general since
a vertex may have different amounts of edges entering it and exiting from it. However, the
sum of the in-degrees, 11, equals the sum of the out-degrees since each exiting edge must
enter some vertex. This number is precisely the number of edges in the directed graph.

The next few ideas we will see have to do with counting the number of paths between
vertices.

The number of paths between vertices of a specified
length
Consider the adjacency matrix for the graph in Figure 8.1, A1. Each element of the matrix,
aij, is 1 if there is an edge connecting vertex vi to vertex vj and 0 otherwise. In other words,
an element of the matrix is 1 if there is a path of length 1 between the 2 vertices and 0
otherwise.

192 Storage and Feature Extraction of Graphs, Trees, and Networks

It turns out, multiplying adjacency matrices by themselves reveals some features of
graphs that may not be so easy to determine by inspection, especially for large graphs.
For example, suppose we multiply the adjacency matrix by itself:

𝐀𝐀12 = 𝐀𝐀1𝐀𝐀1

The number in row i, column j comes from computing the dot product between row i of
the first A1 by column j of the second A1. For example, if i = 2 and j = 3, we have

a21a13 + a22a23 + a23a33 + a24a43 + a25a53 + a26a63 = (1)(1) + (0)(1) + (1)(0) + (1)(1) + (0)(1) +
(1)(0) = 2

Since these are binary values, if a2jaj3 = 1, then there are both edges between v2 and vj and
an edge between vj and v3, meaning there is a path from v2 to vj to v3. Otherwise, at least
one of these edges is not in the graph so the path would not exist.

The sum of these for all j, as we computed earlier, is, therefore, the number of paths with
two edges between v2 and v3. Each other element of A1A1 is constructed in the same way,
so each element of the product gives the number of two-edge paths between each pair of
nodes as follows:

Figure 8.17 – The adjacency for the graph in Figure 8.1 multiplied by itself

There are several details of the squared adjacency matrix that correspond to some features
of the graph:

• The matrix is symmetric since, for example, the number of paths from v2 to v3 is the
same as the number of paths from v3 to v2.

• The diagonal elements equal the degree of the vertices. For example, the number in
row 3, column 3 is 4 since each edge traversed twice makes up a two-edge path from
v3 to itself.

It turns out the pattern of counting paths continues for higher powers of the adjacency
matrix. When we multiply by A1 for a third time, we will get the number of three-edge
paths between each pair of vertices. In general, we have the following theorem.

Feature extraction of graphs 193

Theorem: powers of adjacency matrices
For a graph G = (V, E) with adjacency matrix A, the number in row i, column j in the
matrix An is the number of paths with n edges between vertex vi and vertex vj in the graph.

Matrix powers in Python
We learned how to multiply matrices with the Python function numpy.dot() in Chapter
6, Computational Algorithms in Linear Algebra, which we could use multiple times with
a loop to repeatedly multiply by a matrix, but here, we will learn a better way is to use the
numpy.linalg.matrix_power function, also from NumPy.

For example, let's recreate the calculation of the number of two-edge paths between
each pair of vertices in the graph depicted in Figure 8.1 with Python and also find the
number of three-edge paths between each pair of vertices by taking the third power of the
adjacency matrix A1:

Find the second power of adjacency matrix A1
print(numpy.linalg.matrix_power(A1,2))

Find the third power of adjacency matrix A1
print("\n", numpy.linalg.matrix_power(A1,3))

Then, the output is as follows:

[[3 1 2 3 1 1]
 [1 4 2 1 3 0]
 [2 2 4 2 2 1]
 [3 1 2 3 1 1]
 [1 3 2 1 3 0]
 [1 0 1 1 0 1]]

 [[4 9 8 4 8 1]
 [9 4 9 9 4 4]
 [8 9 8 8 8 2]
 [4 9 8 4 8 1]
 [8 4 8 8 4 3]
 [1 4 2 1 3 0]]

The code finds the second and third powers of the adjacency matrix and prints them.

In general, we tend to see larger numbers in the third power because there are more
three-edge paths between most pairs of vertices than there are two-edge paths.

194 Storage and Feature Extraction of Graphs, Trees, and Networks

One notable exception is that the element in row 6, column 6 is 0 because there are no
three-edge paths from v6 to itself because any path must start with the edge e62 and end
with the edge e26, so adding any one additional edge cannot form a path returning to v6
since v2 has no self-connection.

We can use this idea to determine the shortest path between two vertices, as we will
do next.

Theorem: minimum-edge paths between vi and vj
The minimum n such that the number in row i, column j in the matrix An is positive is the
number of edges in the minimum-edge path from vi to vj. In other words, n is the shortest
distance from vi to vj.

This theorem is self-evident from the previous theorem. Since the number in row i,
column j of A1, A2, A3, … represents the number of paths from vi to vj with 1 edge, with 2
edges, with 3 edges, and so on. Therefore, the first power where the number is not 0 is the
shortest path that exists between those vertices.

Example: paths between nodes in Figure 8.8
Consider the graph in Figure 8.8. Let's find the number of paths of different lengths
between some pairs of nodes with Python. We will write a loop to calculate powers of the
matrix from n = 1 to n = 6 and print the number of paths of each length between some
given vertices. See the following code for these operations:

Print the number of paths from v1 to v6 of each length from 1
 # to 6
for counter in range(1,7):
 A2counter = numpy.linalg.matrix_power(A2,counter)
 print("There are", A2counter[0,5], "paths of length",
 counter, "from v1 to v6")

Print the number of paths from v2 to v3 of each length from 1
 # to 6
for counter in range(1,7):
 A2counter = numpy.linalg.matrix_power(A2,counter)
 print("There are", A2counter[1,2], "paths of length",
 counter, "from v2 to v3")

And the output is the following:
There are 0 paths of length 1 from v1 to v6
There are 1 paths of length 2 from v1 to v6

Summary 195

There are 0 paths of length 3 from v1 to v6
There are 2 paths of length 4 from v1 to v6
There are 0 paths of length 5 from v1 to v6
There are 4 paths of length 6 from v1 to v6

There are 0 paths of length 1 from v2 to v3
There are 0 paths of length 2 from v2 to v3
There are 0 paths of length 3 from v2 to v3
There are 0 paths of length 4 from v2 to v3
There are 0 paths of length 5 from v2 to v3
There are 0 paths of length 6 from v2 to v3

From the first loop, we see the shortest path from v1 to v6 is 2 and it seems only odd-length
paths exist between the two, corresponding to the number of times we will traverse the
two-edge path v1-v2-v6. In contrast, there are no paths of length 6 or less between v2 and v3.
This suggests what we can see by inspection—there are no paths between v2 and v3.

This brings the section to an end, now that we have learned how to extract degrees, the
number of paths between nodes, and short paths on graphs with Python.

Summary
In this chapter, we began by introducing the ideas of graphs, directed graphs, networks,
and directed networks along with some common language used to describe them. Next,
we introduced a few ways in which these structures are used for modeling practical
problems, many to be investigated more deeply in the forthcoming chapters.

After this, we moved on to consider ways in which graphs and networks can be stored in
computer memory with Python. Especially popular are adjacency matrices and adjacency
lists for graphs and weight matrices for networks. In the last section, we showed many
features of graphs from adjacency matrices, such as degrees of vertices, the number of
paths between pairs of vertices, and the length of the minimum-edge paths between the
vertices.

Altogether, this chapter has defined graphs, trees, networks, and the directed types of
these structures, established some common vocabulary on these topics, familiarized
you with some practical applications of each, shown how they can be stored in computer
memory—most frequently in the forms of adjacency or cost matrices, and how to extract
some features of the graphs from these matrices using NumPy and Python code.

196 Storage and Feature Extraction of Graphs, Trees, and Networks

These new skills will serve you well and open doors to a very effective type of modeling
for practical problems using graphs, trees, and networks. In Searching Data Structures
and Finding Shortest Paths, we will focus on algorithms for traversing graphs and trees
to detect more complex features of the graphs. These algorithms have many practical
applications in web crawling for Google, finding driving directions on MapQuest, locating
sources of files in peer-to-peer networks such as BitTorrent, and recommending friends to
users on Facebook.

9
Searching

Data Structures
and Finding

Shortest Paths
This chapter will discuss the searching techniques of graph, tree, and network data
structures and practical applications of graph searches. We will introduce and analyze two
popular algorithms for related problems: depth-first search (DFS) for graph searches and
Dijkstra's algorithm for finding the shortest paths between vertices in networks. Both are
introduced on small graphs to build intuitive understanding, and Python implementations
are written that can scale up to real-world problems.

In this chapter, we will cover the following topics:

• Searching graph and tree data structures

• Depth-first search algorithm

• The shortest path problem and variations of the problem

198 Searching Data Structures and Finding Shortest Paths

• Finding shortest paths with brute force

• Dijkstra's algorithm for finding shortest paths

• Python implementation of Dijkstra's algorithm

By the end of this chapter, you will be able to explain the purpose of searching, implement
the DFS methods, understand shortest path problems and their variants, and implement
Dijkstra's algorithm to find shortest paths.

Important note
Please navigate to the graphic bundle link to find the color images for
this chapter.

Searching Graph and Tree data structures
In the previous chapter, we learned about graphs and trees. As we progress through
the chapter, keep in mind that whenever we refer to graphs, this includes trees because
trees are simply graphs that have no cycles. The topic of this section is the idea of
searching graphs. This simply means to travel along the edges of a graph to locate paths
to destination vertices. This sounds like a simple thing to do, but we hope to do it as
efficiently as we can because many real-world graphs are huge.

There are many reasons why we might want an algorithm to traverse the graph to find
vertices. For example, suppose you want to send a message over the internet to five of
your friends living in five different cities. There certainly will be no direct connection
between your device and your friends' devices, so the message must follow multiple paths
from vertex to vertex through networked devices until it reaches your friends. Networked
devices connect and disconnect from each other from time to time, so it is not possible
for us to store a permanent graph representing the network. This means the paths must be
mapped out at the time you want to send the message. This is what a graph search can do.

Now, determining along which path to send the message is a different question. As the
graph search maps the paths, we may want to choose the paths that take the least time
to deliver the messages or paths that flow through connections that are not congested.
We will learn about finding the shortest path later in the chapter, but for now, it suffices
to say that a graph search is frequently an important part of solving such problems.

This is the norm. Graph searches do not do too much on their own, but they tend to be
used as subroutines in complex algorithms that solve many problems, such as finding
shortest paths and minimum spanning trees, detecting connected components of
graphs, analyzing network flow, matching vertices from one group with another, or large
scheduling problems where tasks have complex relationships.

Depth-first search (DFS) 199

In the next section, we learn about one of the most popular graph search algorithms, DFS.

Depth-first search (DFS)
In short, graph searches traverse a graph to map its structure. In this section, we will learn
about an algorithm to accomplish such a search. Mapping out the structure of a graph can
be important on its own, but it is a sub-problem that algorithms must solve in order to
solve larger problems in graphs, as we have discussed. The DFS algorithm is quite possibly
the most common approach for graph searches; it is an efficient method, and it is used as
a subroutine in many more complex algorithms.

DFS starts at a source vertex, traverses the first available edge to visit another vertex, and
repeats this until there are no edges leading to unvisited vertices—that is, until it has
gone as deep as possible. At this time, it backtracks to the last vertex that has unvisited
neighbors and takes another trip from that vertex through as many unvisited vertices until
it reaches another dead end. It then backtracks and travels to unvisited vertices again and
again until all the vertices connected to the source have been visited.

Let's pursue this method on the following small graph so that we can understand the idea
well. We will start at v1 and explore the graph using DFS.

Note that it was not specified how to choose a path, so we will arbitrarily move to the
lowest-numbered vertex when we have more than one option. We will color vertices
and edges within the current path orange and previously visited vertices and previously
traversed edges will be green:

Figure 9.1 – A graph

200 Searching Data Structures and Finding Shortest Paths

Step 1: The first step will go to v2, which is not adjacent to any vertices we have not yet
visited, so it stops:

Figure 9.2 – Step 1 of DFS

Step 2: We backtrack to node v1, and then follow paths until we reach a dead end once
again. This will take us from v1 to v5 to v4 to v3 to v6, which has no unvisited neighbors,
so we stop:

Figure 9.3 – Step 2 of DFS

Step 3: We backtrack all the way to v5 because it is the latest one in the orange path with
unvisited neighbors and take a path to v7 to v8 to v9 to v10 and stop:

Depth-first search (DFS) 201

Figure 9.4 – Step 3 of DFS

Finally, all the vertices connected to source v1 are colored in our diagram, indicating all
have been visited, so the graph search is complete.

The list of vertices this DFS would produce is as follows:

Notice vertex v11 has not been visited because it is not connected to the source vertex.
In general, DFS will not leave a connected component of the source vertex. For a graph
with multiple connected components, you would have to run DFS once within each
component if you wanted to visit all the vertices.

Now, let's move on to write an implementation of the DFS algorithm in Python.

A Python implementation of DFS
Of course, for large, practical problems, we cannot simply apply the algorithm by hand!
Instead, let's write an implementation of the DFS algorithm in Python.

We will write a function called DFS that will take an input of an adjacency matrix of
a graph and will return all the vertices connected by a path to the source vertex.

We will present it in pieces and explain as we go. First, we have some documentation
listing what the function does and outlines its inputs and outputs:

Depth First Search

INPUTS

𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣5, 𝑣𝑣4, 𝑣𝑣3, 𝑣𝑣6, 𝑣𝑣7, 𝑣𝑣8, 𝑣𝑣9, 𝑣𝑣10

202 Searching Data Structures and Finding Shortest Paths

A - an adjacency matrix. It should be square, symmetric, and
 # binary
source - the number of the source vertex
#
OUTPUTS
vertexList - an ordered list of vertices found in the search

Next, we define the functions with inputs of an adjacency matrix and source vertex,
subtract the source by 1 since Python counts from 0, find the number of vertices in the
graph, and initialize several data structures, including a binary array to store which
vertices have been visited, a stack to be used in the algorithm, and a vertex list the
algorithm will fill in:

def DFS(A, source):
 # reduce the source by 1 to avoid off-by-1 errors
 source -= 1

 # find the number of vertices
 n = A.shape[0]

 # initialize the unvisited vertex set to be full
 unvisited = [1] * n

 # initialize a queue with the source vertex
 stack = [source]

 # initialize the vertex list
 vertexList = []

Depth-first search (DFS) 203

Then, take the last vertex in the stack and add it to the vertex list if it has not been visited,
and add all unvisited neighboring vertices to the end of the queue. Repeat this until the
stack is empty. And, lastly, return the vertex list:

 # while the stack is not empty
 while stack:
 # remove the just-visited vertex from the stack and
 # store it
 v = stack.pop()

 # if v is unvisited, add it to our list and mark it as
 # visited
 if unvisited[v]:
 # save and print the number of the newly visited
 # vertex
 vertexList.append(v)

 # mark the vertex as visited
 unvisited[v] = 0

 # iterate through the vertices
 for u in range(n - 1, 0, -1):
 # add each unvisited neighbor to the stack
 if A[v,u] == 1 and unvisited[u] == 1:
 stack.append(u)

 return vertexList

204 Searching Data Structures and Finding Shortest Paths

Now that the code is written, let's test it on the example we did previously by hand just to
confirm it works as intended. We will need to save the adjacency matrix first:

Save the adjacency matrix for the graph in Figure 9.1
A = numpy.array([[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0],
 [1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0],
 [0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0],
 [0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0],
 [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

Next, let's run the DFS algorithm with source vertex 1 just like we did by hand before.
We will also add 1 to each of the numbers in the vertex list since we have counted from 1
unlike Python:

Run DFS on the graph with adjacency matrix A and source 1
vertexList = DFS(A,1)

Add 1 to the vertex numbers
[x + 1 for x in vertexList]

The output is as follows:

[1, 2, 5, 4, 3, 6, 7, 8, 9, 10]

When we applied the algorithm by hand, note that we found the exact same list in the
exact same order. Clearly, the code is replicating what we were able to do by hand except
it runs almost instantly, so our DFS implementation is a great success!

In this section, we have learned what the DFS algorithm is, discussed some of its
applications, applied it by hand to an example, wrote a Python implementation of the
algorithm, and showed that it matches the results of our example.

The remainder of the chapter focuses on a very practical problem: finding the shortest
path between two vertices in a network or weighted graph.

The shortest path problem and variations of the problem 205

The shortest path problem and variations of
the problem
In this section, we shift our focus to a different graph-related problem: finding the shortest
paths between vertices in a network. As we will discuss, this is a problem that is important
for routing problems, such as finding the shortest route to travel in a car to a destination
or finding the fastest way to deliver a message over a computer network. Shortest path
problems have even been used to determine how to use the thrusters on small fleets of
deep-space research satellites to move them into very precise positions in relation to one
another with minimal fuel usage so that they could work in unison to capture images of
stars.

For graphs with unweighted edges, we have previously solved this problem. Let's review
this simpler problem and its solution briefly before continuing to the more general
problem on networks (that is, weighted graphs). In Chapter 8, Storage and Feature
Extraction of Graphs, Trees, and Networks, we found a way to find the minimum-edge
path, or shortest path, between nodes vi and vj on a graph or directed graph. It was simply
the smallest number, n, such that the nth power of the adjacency matrix, An, has a positive
value in row i, column j. This was obvious since the number in this position gives the
number of vi-to-vj paths of length n.

This result is useful because it allows us to find the shortest distance between nodes
in graphs and directed graphs in an efficient way since matrix multiplication is
computationally cheap, with computational complexity below O(n3).

Shortest paths on networks
However, a problem with much wider applicability is finding the shortest path between
nodes in a network where the edge weights represent the distance between the nodes.
This is a very important problem. It can allow map apps such as MapQuest, Google
Maps, or Waze to find a route with the shortest-distance path between two cities, which
is something many of us use every day! An equivalent problem is finding the shortest
distance to supply electricity from a power source to a customer through nodes in an
electrical grid. Given that there is more loss of energy over longer distances, a smart grid
would keep these distances small to efficiently use the energy generated by power stations.

206 Searching Data Structures and Finding Shortest Paths

Beyond Shortest-Distance Paths
Beyond these examples, it is also possible to interpret weights as something other than
distances. For example, if we use Google Maps to find a path to a certain address,
we might be more interested in how long it takes to reach the address than the distance
traveled. Traveling to the address on foot might yield the shortest distance, but if the
distance is measured in tens or hundreds of miles, the shortest distance might be quite
useless! Instead, we may assign weights to the network corresponding to the time it takes
to travel between nodes. A related problem is used by driving apps such as Waze to use
real-time traffic data to provide better estimates of the time it takes to drive between two
locations. Here, again, the distance is not the most important factor in finding optimal
driving directions—we would like to have the shortest-time route:

Figure 9.5 – In this map, we see two routes: one 503 miles and the other 511 miles

Notice, in Figure 9.5, how Google Maps recommends the longer-distance path instead of
the shortest path. This is because its goal is to give the route with the shortest time, which
happens to be slightly longer in distance. There are many reasons why this could be true:
the shorter route may have more traffic, lower speed limits, or more traffic lights.

The shortest path problem and variations of the problem 207

Treating weights as times opens a whole new set of applied problems where we are
interested in shortest-time paths. For example, if you want to send a text message from
your phone to another person's PC, we would like to choose a path over a network to send
the message from your phone to your friend's PC. Here, we are far more interested in the
latency, or lag-time, in delivering the message than the distance the signal must travel.
Finding shortest-time paths allows us to have intelligent policies for sending traffic over
computer networks or the internet.

Another option is to use weights that represent the cost of adding an edge to a path. For
example, perhaps it costs money for a traveler to traverse an edge, such as costs for fuel
or wages for a truck driver in the context of driving, and we may want to find the
minimum-cost path, even if the distance and time are not minimal. Similarly, if we would
like to build a road connecting two cities through some intermediate nodes, the costs of
building each stretch of roadway between each pair of nodes will be different depending
on not only the distance between the nodes but also the terrain between them, the
distance of transporting materials and workers, and many other considerations.

Whether we seek shortest paths in the context of distance, time, cost, or some other
consideration, we have seen that they all break down to the same problem in the context
of networks—seeking the minimum sum of weights for a path connecting two nodes
we select. This merging of so many different problems into one abstract problem in terms
of networks displays the power of mathematics to generalize and solve many problems
at once.

Shortest Path Problem Statement
We can see that there are reasons to let the weights represent very different measurements
in different applied problems, so let's abstract away from specific assumptions on what
they represent and formalize the problem statement for finding shortest paths on
networks.

Let N = (V, E, W) be a network, where V = {v1, v2, …, vn} is the set of vertices, E is the set
of edges connecting pairs of vertices, and W is the set of weights of the edges. We will
seek the shortest path from vertex vi to vertex vj. That is, we want to find a set of edges
connecting vi to vj with a minimal sum of edge weights.

Note that there may be many different paths between a given pair of nodes or there may
be no paths between them. If there are paths between them, there may be multiple paths
with a minimal sum of weights. As such, we should bear in mind that it is a problem
where solutions may not exist, there may be a unique solution, or there may be multiple
solutions.

208 Searching Data Structures and Finding Shortest Paths

For most practical purposes, only the possibility that there is no solution is especially
important. What this means is that vi is not connected to vj by any path. Let's learn how to
check that vi is connected to vj using a method from the previous chapter.

Checking whether Solutions Exist
Recall that we could find the path with minimal edges from vi to vj by exponentiating the
adjacency matrix until the value in row i, column j is non-negative. Of course, this will
never happen if vi is not connected to vj, but we will generally know how many edges, |E|,
are in a network. Therefore, if An has a 0 in row i, column j for all cases of n ≤ |E|, then
there will be no path between these nodes and we will know that there is no shortest path
because, even if we use all the edges in the graph, it does not contain a path from vertex
vi to vj, so they must not be connected. In the case that they are connected, there exists
a path and so there exists a minimal-weight path.

Thus, before using an algorithm to find the shortest path, it is a good idea to confirm
whether any path exists first by exponentiating the adjacency matrix until we confirm.
Let's write a Python function to do this check. We will simply check whether the vertices
are adjacent and, if not, exponentiate the adjacency matrix one power at a time until
we can confirm that a path exists. Or, if we reach A|E| without detecting a path, we know
there are no paths from vi to vj. In this case, we will know that there is no solution to the
shortest path problem, so we can avoid the trouble of searching for it!

Our function will return True if there is a path and print the length of the path. The
function will return False and print a notice that no path was found:

import numpy

create a function that returns True if vertex i and vertex j
 # are connected in the graph represented by the input
 # adjacency matrix A
def isConnected(A, i, j):
 # initialize the paths matrix to adjacency matrix A
 paths = A

 # find the number of vertices in the graph
 numberOfVertices = A.shape[0]

 # find the number of edges in the graph
 numberOfEdges = numpy.sum(A)/2

 # if vi and vj are adjacent, return True

The shortest path problem and variations of the problem 209

 if paths[i-1][j-1] > 0:
 print('Vertex', i, 'and vertex', j, 'are adjacent')
 return True

 else:
 # run the loop until we find a path
 for pathLength in range(2, numberOfVertices):
 # exponentiate the adjacency matrix
 paths = numpy.dot(paths, A)

 # if the element in row i, column j is more than 0,
 # we found a path
 if paths[i-1][j-1] > 0:
 print('There is a path with', pathLength,
 'edges from vertex', i, 'to vertex', j)
 return True

 # found no paths, the vertices are not connected
 if pathLength == numberOfEdges:
 print('There are no paths from vertex', i, 'to
 vertex', j)
 return False

Since we have written a function, there is no output from this code as it is written,
but we can run it by inputting a specific adjacency matrix for a graph along with the
vertex numbers i and j. Writing a function gives us the advantage of being able to reuse
it as much as we like with different inputs to determine whether different vertices are
connected.

210 Searching Data Structures and Finding Shortest Paths

To test our code, let's use it to find some path lengths between vertices on a small graph
we can easily determine visually and check whether the code replicates these facts. Recall
the following graphs from Chapter 8, Storage and Feature Extraction of Graphs, Trees, and
Networks:

Figure 9.6 – Graph G1 (left) and graph G2 (right)

Let's call the graph on the left G1 and the graph on the right G2. Of course, it is okay
if the graphs are actually networks with edge weights, but the weights are unimportant
to determining whether or not two vertices are connected in the network:

create an adjacency matrix for the graph G1
A1 = numpy.array([[0, 1, 1, 0, 1, 0], [1, 0, 1, 1, 0, 1],
 [1, 1, 0, 1, 1, 0], [0, 1, 1, 0, 1, 0],
 [1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0]])

check if various vertices are connected
print(isConnected(A1, 1, 4))
print(isConnected(A1, 2, 3))
print(isConnected(A1, 5, 6))

Here, we entered the adjacency matrix for graph G1 and checked whether several pairs
of vertices are connected. The output of the code is as follows:

There is a path with 2 edges from vertex 1 to vertex 4
True

Vertex 2 and vertex 3 are adjacent
True

There is a path with 3 edges from vertex 5 to vertex 6
True

The shortest path problem and variations of the problem 211

Clearly, these outputs match the facts we can easily see from the graph: there is a two-edge
path from v1 to v4, there is an edge connecting v2 and v3, and there is a three-edge path
from v5 to v6.

With graph G2, the code should output False for some choices of vertices. Let's try it out:

create an adjacency matrix for graph G2
A2 = numpy.array([[0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1],
 [0, 0, 0, 1, 1, 0], [0, 0, 1, 0, 1, 0],
 [0, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0]])

print(isConnected(A2, 1, 6))
print(isConnected(A2, 2, 5))
print(isConnected(A2, 1, 4))

The output is as follows:

There is a path with 2 edges from vertex 1 to vertex 6
True

There are no paths from vertex 2 to vertex 5
False

There are no paths from vertex 1 to vertex 4
False

Again, the code replicates the facts we can easily see from looking at the diagram of graph
G2: vertices v1 and v6 are connected, vertices v2 and v5 are not connected, and vertices v1
and v4 are not connected.

Now that we have a method to verify solutions exist before we look for them, we will
discuss a method to find the shortest path in a small problem.

Important note
Note that, for large networks, this check for connectedness is somewhat
expensive to run. In this case, we would skip straight to searching for the
shortest paths, although we must realize that the search will fail if vertices vi
and vj are not connected.

212 Searching Data Structures and Finding Shortest Paths

Finding Shortest Paths with Brute Force
As we laid out in the previous section, we will seek a path from vertex vi to vertex vj with
a minimal sum of edge weights. Let's look at the prospects of finding the shortest paths
using brute force.

For example, consider the following network that we discussed in Chapter 8, Storage and
Feature Extraction of Graphs, Trees, and Networks. We will let V be the set of vertices, E be
the set of edges, and W be the set of weights:

Figure 9.7 – A network

An example problem that we will try to solve is to find the shortest path from v1 to v2.
There are many paths between these two vertices, which we list as follows along with their
lengths:

Figure 9.8 – All the paths from v1 to v2 and their lengths, excluding paths that revisit the same vertex

Finding Shortest Paths with Brute Force 213

From this full list of paths from v1 to v2, we can easily see that the shortest paths are the
ones in the highlighted rows with lengths of 3 units, either taking a path from v1 to v3 to v2
or a path from v1 to v3 to v4 to v2.

Notice that these short paths contain more edges than the minimal-edge path that simply
goes directly from v1 to v2, which has a length of 4 units. Of course, the path length is not
necessarily dependent on the distance of taking the path and we should not expect the
shortest paths to necessarily have the fewest number of edges.

Here, we have simply listed all possible paths, but for a large graph, this could be
incredibly expensive to do. For example, suppose a graph with n vertices is complete,
meaning there is an edge between every pair of vertices. So, vertex v1 has n – 1 incident
edges. Vertex v2 has n – 2 incident vertices, plus the edge from v1 to v2, which was already
counted. Vertex v3 has n – 3 incident edges, plus two edges from v1 and v2. Continuing
this pattern, we eventually find just 1 uncounted edge incident to vn – 1 and all the edges
incident to vn have been counted. Then, the number of edges altogether is as follows:

According to an inductive proof in Chapter 2, Formal Logic and Constructing
Mathematical Proofs, the sum of the first n – 1 non-negative integer is as follows:

If the graph has, for example, 100 vertices, then there would be (100)(99)/2 = 4,950 edges,
and so there could be millions of distinct paths from one vertex to another!

So, just how many paths does this mean there would be between a pair of edges? Suppose
we want to count the number of paths from vi to vj that contain k additional vertices.
There are |V| – 2 edges to choose from, so as we learned in Chapter 4, Combinatorics Using
SciPy, the number of such paths is as follows:

This is the case for any k value between 0 and |V| – 2. Therefore, the number of paths in
our 100-vertex complete graph containing 5 other vertices is as follows:

1 + 2 + 3 +⋯+𝑛𝑛 − 1

(𝑛𝑛 − 1)𝑛𝑛
2

(|𝑉𝑉| − 2
𝑘𝑘) =

(|𝑉𝑉| − 2)!
𝑘𝑘! (|𝑉𝑉| − 2 − 𝑘𝑘)!

(100 − 2
5) = (985) = 98!

5! (98 − 5)! = 67,910,864

214 Searching Data Structures and Finding Shortest Paths

But, of course, there's no reason why there would be five additional vertices. There could
be 2, 3, 4, …, 98 vertices, meaning the number of paths is as follows:

It is a little beyond the scope of this book, but this sum is known to equal the following:

As a result, a brute-force approach such as this is clearly limited! It would take an entirely
unrealistic amount of time to test this many paths. Also, this 100-vertex graph is quite
small, especially when you consider the fact that one practical application—map apps
such as Google Maps—place a vertex at every intersection between pairs of roads within
entire cities and beyond. This would mean there are over 12,000 vertices in New York
City alone!

While this brute-force method is easy to understand, it is clearly infeasible, so we need
a more strategic approach to solve the problem in a useful amount of time. We need an
efficient way to find the shortest paths between specified vertices on networks or directed
networks, assuming, of course, that a solution exists. This is what Dijkstra's algorithm
does, so let's learn about it!

Dijkstra's Algorithm for Finding Shortest Paths
In this section, we will learn about Dijkstra's algorithm for finding the shortest paths,
consider the process in simple terms, and apply the algorithm by hand to a small network.

The most common algorithm for finding the shortest paths on a network is Dijkstra's
algorithm. It was named after the Dutch computer scientist Edsger W. Dijkstra, who
constructed it in 1956, but since computing was such a new field at the time, there were
so few academic journals dedicated to computing that he did not publish his findings
until 1959.

We will first learn about the method in intuitive terms using the small network from
Figure 9.5 so that we can understand the ideas behind the approach. This understanding
is important because there are many variations of the algorithm and we hope you will
learn to adapt it to solve your own problems!

Just like the previous section, we will seek the shortest path from v1 to v2. Since it is a small
network, we were able to find that there are such paths using brute force. The paths were
as follows:

v1 – v3 – v2 and v1 – v3 – v4 – v2

(980) + (981) + (982) +⋯+ (9898)

298 ≈ 3.17 × 1029

Dijkstra's Algorithm for Finding Shortest Paths 215

Each of these has a length of 3 units. We will actually construct the short paths from v1 to
every other vertex in the network along the way to find the shortest path from v1 to v2, as
this is how Dijkstra's algorithm is typically implemented.

Dijkstra's algorithm
We will start at vertex v1 and traverse the graph as we carry out Dijkstra's algorithm.
Along the way, we will maintain two lists: vertices we have visited in the method and
vertices we have not visited in the method. The visited set is empty initially and the
unvisited set will have all the vertices in it, as we can see:

• Visited vertices = { }

• Unvisited vertices = {v1, v2, v3, v4, v5, v6}

In our problem, the starting point is node v1, which we call the source. Dijkstra's
algorithm follows the following pattern:

• Initialization: Set the distance to each vertex from the source to infinity and the
distance to itself as 0.

• Visit the nearest unvisited adjacent vertex with the shortest known distance from
the source (ties can be broken arbitrarily):

a) If any distances through the current vertex from the source are shorter than the
known distances, update the shortest distances.

b) For any replaced shortest distances, record the "previous vertex" as the current
vertex.

c) Add the current vertex to the visited vertices list.
• Repeat the work from the previous bullet point until we have visited all of the

vertices.

In the end, Dijkstra's algorithm will give the shortest paths from the source v1 to every
other vertex in the graph, which is much more than we asked for, but in many problems,
we would like to know more than just the one path between specified vertices.

Note that Dijkstra's algorithm is called a greedy algorithm because it chooses the
cheapest path from the source at each step. Of course, building on the shortest existing
path need not lead to the best path, but sometimes it does. If we get lucky, we will find
the shortest path with some of these early choices. If not, then the algorithm will still
eventually find the solution, but it may have to backtrack a significant number of times
before it finds the solution, which is not too fast, but it is still far faster than a brute-force
algorithm could ever hope to be on a problem on a realistically large scale.

216 Searching Data Structures and Finding Shortest Paths

Applying Dijkstra's Algorithm to a Small Problem
Let's see whether we can follow these steps for the preceding small network! We will
explain each step, draw an updated network highlighting the current vertex and the new
edges to be investigated to be incorporated into a shortest path, update a table of shortest
distances and previous vertices, and maintain the lists of visited and unvisited vertices.

Step 0 (initialization): Set the shortest path distance to each vertex to infinity, ∞, except
we set the distance from the source to itself to be 0:

Figure 9.9 – Step 0 of Dijkstra's algorithm

Step 1: Add v1 to the set of visited vertices. Find the distance from the source to all
adjacent nodes in the unvisited vertices set. If the distance is shorter than the current
distance, save it:

Dijkstra's Algorithm for Finding Shortest Paths 217

Figure 9.10 – Step 1 of Dijkstra's algorithm

Step 2: Visit the unvisited vertex with the shortest distance from the source so far, add it
to the set of visited vertices, find the distances from the source through this vertex to each
unvisited vertex, and replace any distances that are shortened (it will be 1 plus the new
edge weight in this case):

Figure 9.11 – Step 2 of Dijkstra's algorithm

218 Searching Data Structures and Finding Shortest Paths

Step 3: Visit the unvisited vertex with the shortest distance from the source so far (v4), add
it to the set of visited vertices, find the distances from the source through this vertex to
each unvisited vertex, and replace any distances that are shortened.

This time, both v4 and v5 have distance 2, so we arbitrarily choose v4:

Figure 9.12 – Step 3 of Dijkstra's algorithm

Here, the distance to v2 would be 2 + 1 = 3, which is not an improvement. The distance
to v5 would be 2 + 2 = 4, which is not an improvement. Therefore, this step makes no
updates, and we will simply move on to the next smallest distance on the list.

Step 4: Visit the unvisited vertex with the shortest distance from the source so far (v5), add
it to the set of visited vertices, find the distances from the source through this vertex to
each unvisited vertex, and replace any distances that are shortened.

There are no unvisited vertices adjacent to v5, so we move on to the next step:

Dijkstra's Algorithm for Finding Shortest Paths 219

Figure 9.13 – Step 4 of Dijkstra's algorithm

Step 5: Visit the unvisited vertex with the shortest distance from the source so far (v2), add
it to the set of visited vertices, find the distances from the source through this vertex to
each unvisited vertex, and replace any distances that are shortened:

Figure 9.14 – Step 5 of Dijkstra's algorithm

220 Searching Data Structures and Finding Shortest Paths

Step 6: Visit the unvisited vertex with the shortest distance from the source so far (v6), add
it to the set of visited vertices, find the distances from the source through this vertex to
each unvisited vertex, and replace any distances that are shortened:

Figure 9.15 – Step 6 of Dijkstra's algorithm

The unvisited set of vertices is now empty, and the shortest distance to v2 is 3. The last edge
of the shortest path is the edge from v3 to v2 as per the table. The previous vertex from v3 of
its shortest path is v1, so the shortest path the algorithm found from v1 to v2 is as follows:

v1 – v3 – v2

This path and distance match what we found by brute force previously, but we followed
a systematic algorithm. Let's also write down the extra, bonus results Dijkstra's algorithm
gives us: the shortest paths from v1 to every other node. We summarize the findings in the
following figure:

Python Implementation of Dijkstra's Algorithm 221

Figure 9.16 – The shortest paths from v1 to every other vertex found with Dijkstra's algorithm

In this section, we have learned about Dijkstra's algorithm for finding the shortest paths
between vertices in a network and worked through a small example by hand. Given the
new understanding this example has given us, we will learn how to implement Dijkstra's
algorithm in Python so that we can solve larger problems!

Python Implementation of Dijkstra's
Algorithm
We have now learned how Dijkstra's algorithm works, but we will now implement
it in Python.

222 Searching Data Structures and Finding Shortest Paths

The input to the algorithm will be a network and a source vertex. The simplest way we can
represent a network is with a weight matrix like we introduced in Chapter 8, Storage and
Feature Extraction of Graphs, Trees, and Networks. For the graph in Figure 9.7, we have the
following weight matrix:

Figure 9.17 – A small network and its weight matrix

In the context of a shortest-distance problem, this weight matrix may be called a distance
matrix, but we will refrain from using this terminology because, as we have seen in
previous sections, these shortest path problems may or may not actually refer to distances.

The output from the algorithm will be a table like the one at the upper right of Figure 9.15,
giving the shortest distance from the source vertex to each of the other vertices.

The table in Figure 9.16 could be generated directly as well, but we will save this to be done
outside the main function for Dijkstra's algorithm.

Let's write a function that takes the weight matrix and source vertex as an input, performs
Dijkstra's algorithm, and returns the table. Since this code is a little long, we will display
it in small parts and explain each step.

First, we will import NumPy and write some quick documentation. This just summarizes
what the following code will do. This is the best practice when you write a new function
or a significant batch of code:

import numpy

Dijkstra's algorithm for finding shortest paths from the
 # source vertex to all other vertices in the graph

Python Implementation of Dijkstra's Algorithm 223

INPUTS
W - a weight matrix. It should be a square matrix
i - the number of the source node
#
OUTPUTS
shortestDistances - the shortest distances from the source to
 # each vertex
previousVertices - the previous vertex to the destination in
 # shortest path from the source to a destination

Second, we will define the function called Dijkstra, which will take a weight matrix, W,
and a vertex, vi, as the source. The first task we will do is find the number of vertices,
initialize several NumPy arrays to store the data we will output for the table, which is the
status of each vertex as unvisited or not.

We will also set the initial distances to the destinations as ∞, set the distance to the source
vertex to 0, and mark the source vertex as a visited vertex:

def Dijkstra(W, i):
 # find the number of vertices
 n = W.shape[0]

 # initialize the shortest distances to infinity
 shortestDistances = numpy.array([numpy.inf] * n)

 # initialize the previous vertices
 previousVertices = numpy.array([numpy.inf] * n)

 # initialize the unvisited vertex set to be full
 unvisited = numpy.array([1] * n)

 # mark the source as visited
 unvisited[i - 1] = 0

 # initialize distance from the source to the source as 0
 shortestDistances[i - 1] = 0

224 Searching Data Structures and Finding Shortest Paths

Third, we will create a loop that will iterate once for each vertex. Within the loop, we find
the nearest unvisited vertex, x, and visit it:

 # loop for iteration per vertex until the unvisited set is
 # empty
 for _ in range(n):
 # find the distances to all unvisited adjacent vertices
 # and set others to 0
 distances = shortestDistances * unvisited

 # find the index of the nearest unvisited vertex (where
 # distances > 0)
 x = numpy.argmin(numpy.ma.masked_where(
 distances == 0, distances))

 # mark vertex x as visited
 unvisited[x] = 0

Fourth, we will iterate over each vertex, and if any adjacent, unvisited vertices have their
shortest distance from the source reduced by passing through the current vertex, we save
this new shortest distance and save the current vertex as the vertex to visit prior to this
destination in the shortest path located so far in the algorithm:

 # iterate through the vertices
 for v in range(n):

 oldDistance = shortestDistances[v]
 newDistance = shortestDistances[x] + W[v,x]
 adjacent = W[v,x] > 0
 unvis = unvisited[v]

 # if v and x are connected, v has not been visited,
 # and we find a shorter distance to node v...
 if adjacent and unvis and oldDistance >
 newDistance:
 # save the shortest distance found so far
 shortestDistances[v] = shortestDistances[x] +
 W[v,x]

Python Implementation of Dijkstra's Algorithm 225

 # save the previous vertex
 previousVertices[v] = x

Lastly, we will print a table just like we have at the upper right of Figure 9.15. Note that
we add 1 to deal with the fact that Python numbers the vertices from 0 while we number
them from 1. We also return the same information in the form that Python stores it by
default in case we want to chain the algorithm to some more work:

print the table similar to the book
 print(numpy.array([numpy.arange(n) + 1, shortestDistances,
 previousVertices + 1]).T)
 # return the outputs
 return shortestDistances, previousVertices

Now that we have written this implementation of Dijkstra's algorithm, we should try
it out. Now, of course, it should work on large problems, but we recommend you always
test out new code, especially long ones, on a problem with a known solution just to verify
that it is working well.

Example – shortest paths
So, let's use the small network and weight matrix from Figure 9.17 and see whether it will
create the outputs we know are correct as shown in Figure 9.15.

First, we save the weight matrix as a NumPy array:

Create a weight matrix for the network in Figure 9.15
W1 = numpy.array([[0, 4, 1, 0, 2, 0],
 [4, 0, 2, 1, 0, 1],
 [1, 2, 0, 1, 1, 0],
 [0, 1, 1, 0, 2, 0],
 [2, 0, 1, 2, 0, 0],
 [0, 1, 0, 0, 0, 0]])

226 Searching Data Structures and Finding Shortest Paths

Then, we call Dijkstra's algorithm on the matrix, W1, and source vertex, v1:

Run Dijkstra's algorithm with a source at vertex v1
Dijkstra(W1, 1)

The output is as follows:

[[1. 0. inf]
 [2. 3. 3.]
 [3. 1. 1.]
 [4. 2. 3.]
 [5. 2. 1.]
 [6. 4. 2.]]

(array([0., 3., 1., 2., 2., 4.]), array([inf, 2., 0., 2.,
 0., 1.]))

The array that is outputted first is exactly the same as the table we found in Figure 9.15 by
applying Dijkstra's algorithm by hand for this problem.

The second part, which is what was actually returned by the function, is the same as the
right two columns, just with the numbers less by 1 due to Python's preference to start
counting from 0.

This chart is nice, but what about actual paths? It would be convenient if we could
generate the paths themselves as we did by hand in Figure 9.16. This would be tedious
with a large path, so let's write a short function to do that for us!

First, we define a new function and initialize some variables and lists:

Use the previousVertices chart to construct the shortest path
 # from input source to input destination and print a
 # string showing the path

def printShortestPath(shortestDistances, previousVertices,
 source, destination):
 # avoid off-by-one error
 source -= 1
 destination -= 1

 # convert previousVertices to integers

Python Implementation of Dijkstra's Algorithm 227

 previousVertices = previousVertices.astype(int)

 # initialize the path with the destination
 path = [destination]

Next, we add the previous vertex from the table over and over until we reach the source:

 # add the previous vertex from previousVertices until we
 # reach the source
 # the source
 for _ in range(previousVertices.shape[0] - 1):
 # if the source is in the path, stop
 if path[-1] == source:
 break
 # if the source is not in the path, add the previous
 # vertex
 else:
 path.append(previousVertices[path[-1]])

Lastly, we create and print a string similar to the second column of the table in Figure 9.16:

 # initialize an output string
 output = []

 # iterate through the path backwards (source to
 # destination)
 for i in numpy.flip(path):
 # construct a list of strings to output
 if i > 0:
 output.append('->')

 output.append('v' + str(i + 1))

 # print the strings with no spaces
 print('Path =', *output, '\t\t Distance =',
 shortestDistances[destination])

228 Searching Data Structures and Finding Shortest Paths

With this code written, let's run it to find short paths from v1 to each other vertex:

for i in range(2,7):
 printShortestPath(shortestDistances, previousVertices, 1,
 i)

The output is as follows:

Path = v1 -> v3 -> v2 Distance = 3.0
Path = v1 -> v3 Distance = 1.0
Path = v1 -> v3 -> v4 Distance = 2.0
Path = v1 -> v5 Distance = 2.0
Path = v1 -> v3 -> v2 -> v6 Distance = 4.0

As you can see, it totally matches the table from Figure 9.16.

All looks great for this example, but let's look at an example with an extra difficulty:
a network where some pairs of vertices have no path between them.

Example – A network that is not connected
Consider the following network and weight matrix:

Figure 9.18 – A network that is not connected

This graph is broken down into two connected components that are not connected to
one another by any edges, so there will be no shortest path between vertices in opposite
components. As such, feeding this into Dijkstra's algorithm as we have written it cannot
work in the same way. We will need to adapt our methods to find the shortest paths.

Python Implementation of Dijkstra's Algorithm 229

First, let's save the weight matrix as a NumPy array:

Create a weight matrix for the network in Figure 9.16
W2 = numpy.array([[0, 4, 0, 0, 0, 0],
 [4, 0, 0, 0, 0, 1],
 [0, 0, 0, 1, 4, 0],
 [0, 0, 1, 0, 2, 0],
 [0, 0, 4, 2, 0, 0],
 [0, 1, 0, 0, 0, 0]])

Next, let's write a small function to do a few things: (1) find all vertices connected to the
source node using the isConnected function and (2) run Dijkstra's algorithm to find
the shortest paths:

find the shortest paths to connected vertices
def distancesWithinComponent(source):
 # initialize the connected component
 component = [source]

 # construct the connected component
 for i in range(1, W2.shape[0] + 1):
 if i != source and isConnected(W2, source, i):
 component.append(i)

 # find the weight matrix correponding to the connected
 # component
 subnetwork = W2[numpy.array(component) - 1,:][:,numpy.
 array(component) - 1]

 # run Dijkstra's algorithm
 return Dijkstra(subnetwork, 1)

Let's run it from vertex v1:

distancesWithinComponent(1)

230 Searching Data Structures and Finding Shortest Paths

The output is as follows:

Vertex 1 and vertex 2 are adjacent
There is a path with 2 edges from vertex 1 to vertex 6
[[1. 0. inf]
 [2. 4. 1.]
 [3. 5. 2.]]
(array([0., 4., 5.]), array([inf, 0., 1.]))

Note that the table is slightly off—the first column should be 1, 2, and 6. However, we have
constructed a subnetwork and renumbered the vertices to 1, 2, and 3. But, clearly, we see
the shortest path from v1 to v2 simply follows the edge connecting them for a length of 4
and the shortest path from v1 to v6 passes through v2 with a length of 5.

Next, let's run it with a source in the other component, v3:

distancesWithinComponent(3)

The output is as follows:

Vertex 3 and vertex 4 are adjacent
Vertex 3 and vertex 5 are adjacent
[[1. 0. inf]
 [2. 1. 1.]
 [3. 3. 2.]]
(array([0., 1., 3.]), array([inf, 0., 1.]))

Here, the vertices are v3, v4, and v5. The shortest path from v3 to v4 simply traverses the
edge connecting them of length 1, while the shortest path from v3 to v4 passes through v5
and has a length of 3. These results are fairly obvious for the small graph we used, but it is
good to see that we can use the code we have written to work with disconnected networks.

Summary 231

Summary
In this chapter, we used our understanding of graph structures, including trees and
networks, from Chapter 8, Storage and Feature Extraction of Graphs, Trees, and Networks,
and learned about some practical graph-oriented problems and popular algorithms for
solving them.

We began by learning about graph searches where we traverse a graph to discover
its structure and perhaps do some calculations at each vertex. Then, we moved on to
perhaps the most common graph search algorithm, DFS. We did an example on a small
graph by hand before writing a Python implementation of the algorithm, which
we confirmed led to the same results as the example we did by hand.

Then, we moved on to a very practical problem: finding the shortest paths between
vertices in networks. This problem has applications in finding optimal travel routes,
sending messages over a computer network through good paths, efficiently delivering
electricity over electrical grids, and many other areas. With some networks, there are
no paths between certain vertices, so we wrote a quick procedure to verify vertices are
connected to each other by a path. Then, we used some counting methods we learned
in Chapter 4, Combinatorics Using SciPy, to show that brute-force methods to finding
shortest paths are infeasible.

In the next section, we introduced Dijkstra's practical algorithm for finding the
shortest path from a source vertex to each other vertex in the network since brute-force
methods were not effective. It is a greedy algorithm that takes the step that seems most
advantageous at each iteration. We first carried out the algorithm step by step by hand on
a small problem to build some understanding of how it works.

In the last section, we wrote a Python implementation of Dijkstra's algorithm from scratch
that works just like the example we did by hand. It generated precisely the same optimal
path for that example, but we also showed how it can immediately be applied to other
problems by simply inputting the weight matrix and the source node.

Next, we will move on to Part III of the book, which focuses on real-world applications of
the mathematics we have learned, including linear regression for machine learning, web
searches with Google's PageRank algorithm, and principal components analysis, a method
for dimensionality reduction that allows us to store large datasets with fewer variables.

Part III – Real-World
Applications of

Discrete Mathematics

Here you will learn how to apply discrete math to real-world, large-scale problems,
including machine learning—in the shape of regression analysis for building predictive
models and principal component analysis for dimensionality reduction—and modern
web searches.

This part comprises the following chapters:

• Chapter 10, Regression Analysis with NumPy

• Chapter 11, Web Searches with PageRank

• Chapter 12, Principal Component Analysis with Scikit-Learn

10
Regression Analysis

with NumPy and
Scikit-Learn

The objective of this chapter is to predict an unknown variable based on samples of one
or more other variables. In the simplest case, we have a sample of paired data (x1, y1), …,
(xn, yn) and need to find a line that best fits the data (that is, a line that passes through
or is close to most of the data points) with SciPy implementations of the least-squares
regression model. We will then extend the method to fit nonlinear curves and to take
whole databases (x11, x12, …, x1k, y1), …,(xn1, xn2, …, xnk, yn) and try to predict y based on k
input variables.

We will also be using some Python libraries, such as SciPy, NumPy, and scikit-learn.
SciPy is an open source Python library for scientific computing, and NumPy will help us
to work with multidimensional arrays and matrices and apply high-level mathematical
functions to these arrays. Scikit-learn is a machine learning library, and we will be using
the regression classes that come with it.

By the end of this chapter, you should have learned about the theory behind regression
(such as the line of best fit, the least-squares method, and more) and how to implement
this theory for real-world datasets to make predictions.

236 Regression Analysis with NumPy and Scikit-Learn

In this chapter, we will be covering the following topics:

• Best-fit lines and the least-squares method

• Least-squares lines with NumPy

• Least-squares curves with SciPy and NumPy

• Least-squares surface with SciPy and NumPy

Important Note
Please navigate to the graphic bundle link to refer to the color images for
this chapter.

Dataset
For this chapter, we will be using a dataset that contains technical specifications for
different cars. This dataset is a modified version of the MPG_dataset.csv available
here: https://www.kaggle.com/uciml/autompg-dataset. Some of the
columns of the original dataset were removed since they are not relevant to this chapter.

The columns of the dataset are as follows:

• mpg: Miles per gallon (continuous variable)

• cylinders: Number of cylinders in the car (multi-valued discrete variable)

• displacement: Combined volume of all the cylinders (continuous variable)

• horsepower: Unit of power (continuous variable) – target/dependent variable

• weight: Weight of the car (continuous variable)

• acceleration: Acceleration of the car (continuous variable)

Let's say that we are trying to buy a car and our deciding factor is horsepower. However,
we have access to values for all other variables (mpg, displacement, weight, and
acceleration) except for horsepower. Here are some questions we will try to answer
in this chapter:

• Is there any relationship between the horsepower and weight of a car?

• If there is a relationship, how strong a relationship is it? Is it a linear relationship?

• Is there any way for us to predict what will the horsepower value be given any one
or more of the other variables?

https://www.kaggle.com/uciml/autompg-dataset

Dataset 237

Linear regression can answer the preceding questions. We will learn some general
concepts about linear regression and then use this dataset to answer the questions
just posed.

Here we can see some pair plot code showing the relationship between the different
variables present in our dataset. The plot gives a general idea about how our variables are
related to each other:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

#Importing the csv file
df = pd.read_csv("auto_dataset.csv",index_col=0)

#Plotting the pairplot
sns.pairplot(df, diag_kind="kde")
plt.show()

The output of the code is shown here:

Figure 10.1 – Pair plot showing the relationship between different variables in the dataset

238 Regression Analysis with NumPy and Scikit-Learn

You can see that some of the plots have a straight-line relationship (linear relationship)
while others do not. There can be different kinds of relationships between variables, such
as logarithmic, exponential, and polynomial. The plots along the diagonal of the figure
show the distribution of the variables.

Next, we will discuss best-fit lines and the least-squares method, which will aid our
understanding of regression analysis.

Best-fit lines and the least-squares method
In this section, we will learn about best-fit lines and the least-squares method and see
some very simple plots to enforce these concepts. Best-fit lines will be used to fit a dataset,
and through doing this, it is made sure that the least-squares error is minimized.

Variable
A variable is a feature that does not have a fixed value. For example, let's say you want to
buy a car and the most important feature for you is horsepower. You then go ahead and
look at different car models to compare the horsepower values. Here the horsepower is
a variable, since it takes different values based on the car model.

Linear relationship
Linear relationship is a term used to describe a straight-line relationship. This can be
expressed mathematically as the equation of a line.

For example, if you are interested in finding the relationship between two variables, such
as horsepower and weight, for different cars, and if the horsepower increases or decreases
linearly (straight-line relationship) with weight, then we can say that these variables have
a linear relationship.

Regression
In a typical regression problem, we try to predict the value of an output variable
(dependent variable) given some input variable (independent variable), based on some
examples of input data points that we have outputs for. A simple linear regression
problem can be represented mathematically as shown here (this is the equation for a line):

Y βo Xo + β1 X1 = 𝒀𝒀

Best-fit lines and the least-squares method 239

Here, we are trying to find the value of Y based on our knowledge of independent/
predictor variable X1, also called features. βo and β1 are unknown constants (called model
parameters) that we will have to figure out based on the example data points, which will
be represented in the form of ordered pairs (Xi, Yi), where i = 0,1,2,….,n. Xo is always equal
to 1. An independent variable is something whose value we can change as we want and see
the changes in the dependent variable (here, Y).

It is important to keep in mind that not all Xi can be mapped to all Yi perfectly or
generalize to new outputs, but we try to get as close to the ideal match (perfect match) as
possible, hence the symbol to convey the fact that it is an approximate model. The
approximate value of the prediction is represented by �̂�𝒀 .

An appropriate question to ask here would be, why are we trying to predict a value of Y?
Often, in real-life scenarios, we would have the values for X (the independent variable)
and Y (the dependent variable). However, if we want to predict the value of Y for a certain
X that is of interest to us, we will want to have access to an equation like the previous one.

For example, say we want to buy a car and we know that there is a linear relationship
between weight and horsepower. We have some historical data that has weights of
different cars as well as their corresponding horsepower. Let's say that we come across
the weight of a car but see no mention of the horsepower. Hence, we can use our data to
predict what the horsepower might be for this car for which we only know the weight.

The equation shown previously requires two variables for us to fit a linear regression
model. However, we can do the same for more variables/for higher dimensions, the
equation for which is shown here (equation for a plane/surface):

Y βo + β1 X1 + β2 X2 + β3 X3 + …. + βn Xn = �̂�𝑌

We can write the preceding equation in a vectorized form as shown here:

�̂�𝒀 = β . X

�̂�𝒀 = βT X

240 Regression Analysis with NumPy and Scikit-Learn

Here, the following applies:

• β is the model parameter vector containing βo,….., βn – these are the parameters
we will change in order to get Y and �̂�𝒀 as close to each other as possible.

• X is the model feature vector containing Xo, X1,……, Xn.

• We are doing a dot product between β and X, which will result in βo + β1 X1 + β2 X2
+ β3 X3 + …. + βn Xn.

Both β and X are column vectors. With our knowledge of the vectorized form of an
equation, we will now move on to learn about the line of best fit.

The line of best fit
The line of best fit, also called a trendline, is an educated guess regarding what the linear
relationship between the independent and dependent variables should be; it is the
equation of a line that best fits the given data. Let's try to understand this with the help
of an example. We will plot some X and Y values and see how the line of best fit varies
depending on the data points. Here, the R2 values give us a measure of the strength of the
linear relationship between the variables. An R2 value of 1 suggests that the variables are
indeed linearly related. The lower the R2 value, the more likely it is that the variables might
not be linearly related:

Figure 10.2 – Data points used for a line of best fit that passes through all points

We will now plot the preceding data points and draw a trendline through the points:

Best-fit lines and the least-squares method 241

Figure 10.3 – A line of best fit that passes through all data points

In the preceding plot, we see that the line of best fit passes through all the data points, and
hence we obtain the equation �̂�𝒀 = X. However, this does not always have to be the case,
since the X (predictor) and Y (dependent) values are usually not the same in real-world
examples.

Next, we will try to plot a similar graph but with mismatched X and Y to see how the
best-fit line as well as the equation for the line changes:

Figure 10.4 – Data points used for a line of best fit that does not pass through all points

242 Regression Analysis with NumPy and Scikit-Learn

We will now plot these data points and draw a trendline through the points and compare
the difference between the previous plot and this one. The following graph shows the
plotting of the points from the preceding table:

Figure 10.5 – A line of best fit that does not pass through all the data points

We can see from Figure 10.5 that the best-fit line does not pass through all the points and
hence the equation of the best-fit line has an intercept (βo = 1) and a slope (β1 = 1.1429).

It is important to keep in mind that even if you can draw a best-fit line through some data
points, it does not mean the variables (X and Y) have a linear relationship. In such cases,
it is always a good idea to make a scatterplot for the data points and look at the plot to see
whether a linear relationship makes sense for that dataset. One such example is shown here:

Best-fit lines and the least-squares method 243

Figure 10.6 – A line of best fit for variables that are not linearly related to each other

The preceding figure shows an example where the line of best fit for a linear relationship is
not a good idea. Hence, non-linear lines of best fit such as polynomial functions could be
a better idea.

Now that we have seen what a line of best fit is, the next step is to figure out how these
lines are constructed; this will be covered in the next section.

The least-squares method and the sum of squared
errors
The sum of squared differences between the value of actual Y and the predicted �̂�𝑌 is called
the sum of squared errors (SSE). If the data points (actual and predicted) are identical,
then the SSE is 0. This is also a measure of the variance: the greater the variance, the
greater the SSE, and vice versa. In an ideal case, we would want the SSE to be small, and
the best-fit line helps us to achieve this goal. The SSE can be mathematically represented
as follows:

SSE = e1
2 + e2

2 + …. + en
2

244 Regression Analysis with NumPy and Scikit-Learn

Here e1, e2,…., en are the differences between the �̂�𝑌 (predicted) and Y (actual), also called
residuals. The following figure shows how the predicted Y values differ from actual Y
values, hence giving rise to residuals:

Figure 10.7 – Residuals

The preceding figure shows the residuals, in other words, the distance of the actual Y from
the line of best fit (or predicted �̂�𝑌). The least-squares approach tries to minimize the SSE
by choosing the values of β parameters. To find the value of β that minimizes the SSE,
there is a closed-form equation that can be used to get the result directly. This equation is
called the normal equation and is stated here:

 = (XTX)-1 XT Y

Here, the following applies:

• is the value of the parameters that minimize the SSE.

• Y is the vector of target values ranging from Y1, ….. , Yn.

The normal equation must compute the inverse of XTX, which is an (n+1) X (n+1)
matrix (since we have n feature variables and Xo = 1). The computational complexity of
such an inversion is of the order O(n3), depending on the implementation. Hence, if
we have double the number of features, then the computational time gets multiplied by
23 = 8 times.

Least-squares lines with NumPy 245

Another thing to keep in mind is that XTX might not be invertible in all cases.

Now that we have an idea about line of best fit, the least-squares error, and their
mathematical formulations, we will now learn how to apply these to examples using
Python.

Least-squares lines with NumPy
In this section, we will learn how to fit a line to a dataset by using the normal equation as
well as by using Python libraries. We will also find the parameter values (β) and use these
values to predict the Y values for some X value of our choice.

The relationship between the variables (horsepower and weight) can be represented by the
following mathematical formulation:

Y βo + β1 X

Our goal is to find the values for βo and β1. Here, horsepower is the dependent variable (Y)
and weight is the independent variable (X).

Before beginning the coding part, make sure that the Python file that you are editing and
auto_dataset.csv are in the same folder. If not, make sure to include the path for
the .csv file location in the Python file so that it can be read and used for computations.
Also, the packages used in the coding exercises (numpy, pandas, seaborn,
matplotlib.pyplot, and sklearn) should be installed to avoid error messages.
These packages can be installed by typing pip install numpy (or whatever package
you want to install) in the terminal.

We will begin by importing all the required packages. This can be done using the
following block of code:

Import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Next, we will read the CSV file and import the data to the Python workspace and check
the shape of the data frame:

df = pd.read_csv("auto_dataset.csv")
df.shape

246 Regression Analysis with NumPy and Scikit-Learn

The output is this:

(392, 7)

Next, we will use the normal equation to find the parameter values, which will then be
used for prediction purposes. Here, weight is chosen as the X value and horsepower is
the Y value:

X = df["weight"]
Y = df["horsepower"]

X_b = np.c_[np.ones((392,1)),X] #here we are adding X_o = 1 to
 all the feature values
 beta_values = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(Y)
 print(beta_values)

The output is this:
array([-12.1834847 , 0.03917702])

We found the value of βo is -12.1834847 and β1 is 0.03917702.

The equation for the best-fit line is horsepower = -12.183 + 0.0392 * weight.

Let's try to predict the value of horsepower for a car given that we know what its weight
is. We will try to predict the horsepower values for the cars for which we already know
these values (weight of car = 2500 and 2045) and hence compare the actual and predicted
values. We will use equation 4 and the β values obtained in the previous step to find the
predicted values for horsepower:

X_new = np.array([[2500],[2045]])
X_new_b = np.c_[np.ones((2,1)),X_new]
y_predict = X_new_b.dot(beta_values)
print(f"Weight of car = 2500; predicted horsepower is
 {y_predict[0]:.3}; actual horsepower is 88")
print(f"Weight of car = 2045; predicted horsepower is
 {y_predict[1]:.3}; actual horsepower is 68")

The output is this:
Weight of car = 2500; predicted horsepower is 85.8; actual
 horsepower is 88
Weight of car = 2045; predicted horsepower is 67.9; actual
 horsepower is 68

Least-squares lines with NumPy 247

Hence, we were able to predict the horsepower of the cars for which we knew the weights.
We can see that the predicted and actual values are close enough but not the same. This
happens because this is an approximation since the best-fit line does not pass through all
the data points and we minimized the SSE.

Now that we have seen how we can use the normal equation to find β values, we will plot
all the data points and the trendline. We will use the parameter values obtained previously
to construct the equation for a line that will help us predict the horsepower values for
cars for which we know the weights:

X_plot= np.array([[1500],[6000]])
X_plot_b = np.c_[np.ones((2,1)),X_plot]
Y_plot = X_plot_b.dot(beta_values)

Equationline = "Y ={:.3f}+{:.3f}X".format(beta_values[0], beta_
 values[1])
plt.plot(X_plot, Y_plot, "r-", label = Equationline)
sns.scatterplot(X,Y, label = "Training Data")
plt.legend()
plt.show()

The output of the code is shown here:

Figure 10.8 – Least-squares line fit

248 Regression Analysis with NumPy and Scikit-Learn

From the preceding plot, we see that vehicles with higher weights tend to have higher
horsepower and vice versa. The general trend of the plot is that as the weight of the vehicle
increases, so does the horsepower.

Let's repeat the preceding linear regression using scikit-learn. More information about this
package and its APIs can be found here: https://scikit-learn.org/stable/
user_guide.html#user-guide. Information regarding ordinary least squares
regression can be found here: https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.LinearRegression.html#sklearn.
linear_model.LinearRegression.

We will obtain the same β values but with just a few lines of code using scikit-learn:

import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
df = pd.read_csv("auto_dataset.csv")
X = df["weight"]
Y = df["horsepower"]
X = X.values.reshape(-1,1)
Y = Y.values.reshape(-1,1)

reg.fit(X, Y)
print("The value obtained for beta_o is: ", reg.intercept_)
print("The value obtained for beta_1 is: ",reg.coef_)

The value obtained for beta_o is: [-12.1834847]
The value obtained for beta_1 is: [[0.03917702]]

We can also use scikit-learn for prediction, and this can be done in just one line of code, as
follows. We will use the same weights of 2500 and 2045 as in the previous example and
hence obtain the same predicted horsepower values:

X_new = np.array([[2500],[2045]])
print(reg.predict(X_new))

[[85.75906307]
 [67.93351937]]

https://scikit-learn.org/stable/user_guide.html#user-guide
https://scikit-learn.org/stable/user_guide.html#user-guide
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression

Least-squares curves with NumPy and SciPy 249

In this section, we learned about how to obtain the best-fit line for a dataset using Python
and some of its packages, such as NumPy and scikit-learn. We also learned about how to
predict a certain value Y given the predictor variable X.

In the next section, we will learn about fitting least-squares curves to a dataset. This
applies to cases where the X and Y variables do not have a linear relationship.

Least-squares curves with NumPy and SciPy
We will now learn how to fit curves to a dataset. For this section, we will investigate the
relationship between horsepower and mpg for a vehicle. From Figure 10.1, we know that
the relationship between these two variables is not linear; hence, we will use power 2 of
our feature variable X as an input to the model. This is called polynomial regression. Here,
we are using a linear model to fit a non-linear dataset.

Here's how we will import the required Python packages and select the X and Y of interest
from the pandas data frame, df:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

#Importing the dataset as a pandas dataframe
df = pd.read_csv("auto_dataset.csv")

#Selecting the variables of interest
X = df["horsepower"]
y = df["mpg"]

#Converting the series to a column matrix
X_new = X.values.reshape(-1,1)
y_new = y.values.reshape(-1,1)

250 Regression Analysis with NumPy and Scikit-Learn

We will be using scikit-learn's PolynomialFeatures class. For more information
about this class, refer to this link: https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.PolynomialFeatures.
html#sklearn.preprocessing.PolynomialFeatures. This will help us
to transform our input data by adding a new feature to the dataset – the square of X
(horsepower), which is a second-degree polynomial. We will use a polynomial of degree
2 of the form Y = βo + β1 X + β2 X

2:

poly_features = PolynomialFeatures(degree=2, include_
 bias=False)
X_poly = poly_features.fit_transform(X_new)

X_poly contains the original feature (X = horsepower) plus the squared value of the
feature. We will now use the linear regression model as shown in the previous section,
to carry forward our analysis:

reg = LinearRegression()
reg.fit(X_poly, y_new)
print("Y ={:.4f} X^2 {:.3f} X + {:.3f}".format(reg.coef_[0,1],
 reg.coef_[0,0], reg.intercept_[0]))

The output is as follows:

Y =0.0012 X^2 -0.466 X + 56.900

Hence, we have the equation for the best-fit curve, as shown in the preceding output.

Next, we will use our knowledge of this equation to plot the best-fit line and lay it on the
top of a scatterplot of the actual data. We will vary the X values between the minimum
and maximum horsepower values that are present in the dataset for plotting the best-fit
curve and hence calculate the corresponding Y values using the equation obtained in the
preceding step:

start = df["horsepower"].values.min()
stop = df["horsepower"].values.max()
X_plot = np.linspace(start, stop, 1000)
Y_plot = reg.coef_[0,1] * X_plot * X_plot + reg.coef_[0,0] *
X_plot + reg.intercept_[0]

Equationline = "Y ={:.4f} X^2 {:.3f} X + {:.3f}".
 format(reg.coef_[0,1], reg.coef_[0,0], reg.intercept_[0])

sns.scatterplot(X,y, label = "Training Data")
plt.plot(X_plot, Y_plot, "r-", label = Equationline)

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures

Least-squares curves with NumPy and SciPy 251

plt.legend()
plt.show()

The output of the code is shown here:

Figure 10.9 – Least-squares curve fit

The best-fit line for the dataset (X = horsepower ; Y = mpg) is shown here. This line was
overlayed on top of actual data points to show that the best-fit line is an approximation.
When we try to predict the Y value for our choice of X, the algorithm will use the
equation obtained to find us an approximate Y value. It is important to keep in mind that
the predicted values are less reliable if we are trying to extrapolate outside the range of X
values for the dataset.

In this section, we learned about how to fit least-squares curves to a non-linear dataset.
To do so, we added a new feature variable equal to square of X. We then used the linear
regression class provided by scikit-learn to find the β parameters. These parameters were
then used to draw the best-fit curve. It is important to keep in mind that we might run
into overfitting issues when fitting curves, which means that the prediction made using
the equation we came up with might not be accurate.

Now that we know best-fit curves, the next practical step would be to learn about fitting
least-squares surfaces.

252 Regression Analysis with NumPy and Scikit-Learn

Least-squares surfaces with NumPy and SciPy
An appropriate question to ask in this section would be to ask, "Why do we need to
fit surfaces to a dataset?" It is important since 2D plots are not enough to show the
relationship between the predictor variables (X1, X2, …., Xn) and the predicted variable
Y. In many real-life scenarios, Y is affected by more than one X variable, and hence
to capture such a relationship, we would need a surface plot (3D), which can show
the relationship between X1, X2, and Y. This relationship between the variables can be
represented by the following mathematical formulation:

Y βo + β1 X1 + β2 X2

Our goal is to find the values for βo, β1, and β2.

For this section, we will use the horsepower and weight values of a car as input for X1
and X2 respectively. The output variable will be displacement (Y). We can mathematically
write this as follows:

Y βo + (β1 * horsepower) + (β2 * weight)

Here's how we will import the required Python packages and select the X and Y of interest
from the pandas dataframe df:
from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np
from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt

#Importing the csv file and choosing the X and Y variables
df = pd.read_csv("auto_dataset.csv")
Y = df["displacement"]
X = df[["horsepower","weight"]]

Next, we will use the scikit-learn linear regression model to fit the X and Y values. We will
print the values of the regression coefficients for our reference:
#Fitting the linear regression model
reg = LinearRegression()
reg.fit(X, Y)

Printing the parameter values obtained after fitting the
 # model
print("The value obtained for beta_o is: ", reg.intercept_)
print("The value obtained for beta_1 and beta_2 are: ",reg.
 coef_[0] , "and", reg.coef_[1])

Least-squares surfaces with NumPy and SciPy 253

The value obtained for beta_o is: -135.95073526530456
The value obtained for beta_1 and beta_2 are:
 0.9757143655155813 and 0.07671670340152593

Hence, we can write the equation as follows:

Y -135.951 + (0.976 * horsepower) + (0.0767 * weight)

Now that we have the model and the coefficients, the next step would be to plot the
dataset as well as the model obtained (surface) to better understand the process. We will
need to find the minimum and maximum values for horsepower and weight and then
obtain 100 equally spaced values between the two values. Once we have these 100 equally
spaced values, we can then use the preceding equation to obtain the corresponding Y
values that will be used to make the surface plot. In addition, we will also plot the actual
dataset that was used for obtaining the β values for comparison:

Plotting the surface plot
X1_min = df["horsepower"].values.min()
X1_max = df["horsepower"].values.max()
X1_values = np.linspace(X1_min, X1_max, 100)

X2_min = df["weight"].values.min()
X2_max = df["weight"].values.max()
X2_values = np.linspace(X2_min, X2_max, 100)

Y_reg = reg.intercept_ + (reg.coef_[0] * X1_values) + (reg.
 coef_[1] * X2_values)
Y_plot = Y_reg.reshape(-1,1)

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X.horsepower, X.weight, Y, color="red", s=1)
X1_plot, X2_plot = np.meshgrid(X1_values, X2_values)
surf = ax.plot_wireframe(X1_plot, X2_plot, Y_plot, rstride=10,
 cstride=10)
ax.view_init(50, 150)
ax.set_xlabel('Horsepower')
ax.set_ylabel('Weight')
ax.set_zlabel('Displacement')
plt.legend()
plt.show()

254 Regression Analysis with NumPy and Scikit-Learn

The output of the code is shown here:

Figure 10.10 – Least-squares surface plot

The least-squares surface for the dataset (X = horsepower, weight; Y = displacement) is
shown in the preceding figure. This surface was overlayed on top of actual data points to
show that the least-squares surface is an approximation. When we try to predict the Y
value for our choice of X values, the algorithm will use the equation obtained to find us
an approximate Y value. It is important to keep in mind that the predicted values are less
reliable if we are trying to extrapolate outside the range of X values for a dataset.

In this section, we learned about least-squares surfaces and how to implement them on
a real-world dataset by using Python packages such as scikit-learn. Scikit-learn has a lot
of other important classes that can be used for machine learning problems; it is always
a good idea to go through the documentation at https://scikit-learn.org/
stable/modules/classes.html.

https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/classes.html

Summary 255

Summary
In this chapter, we learned about regression, the least-squares method, and line, curve,
and surface fitting. We also learned about how to apply these methods to a real-world
dataset and how to predict the values for an output variable (Y) given access to some
historical dataset that has both X and Y values. Caution should be taken if we are trying
to extrapolate outside the range of X values for a dataset; the predicted values might not
be reliable. You should now be able to apply these concepts to your own datasets and use
Python libraries such as SciPy, NumPy, and scikit-learn to carry out regression analysis
and prediction.

In the next chapter, we will learn about web searches from both mathematical and
practical perspectives. We will also look at Google's PageRank algorithm and discuss the
linear algebra involved.

11
Web Searches with

PageRank
Searching the web is one of the first things we learn to do on the internet. The purpose,
simply, is to find information of a topic of interest, but how does Google, or other search
engines, take the words we search and effectively return what we want? This is the
question we aim to answer in this chapter.

More specifically, this chapter discusses web searches from both a mathematical and
practical perspective. We will first build the mathematical setting for common methods
for web searches. We'll then look more deeply at Google's PageRank method and the
linear algebra required. We'll then construct an implementation of PageRank that
combines this linear algebra with the probabilistic aspects of PageRank we discussed
in Chapter 5, Elements of Discrete Probability.

In this chapter, we will cover the following topics:

• The development of search engines over time

• How Google's PageRank algorithm works

• Implementing the PageRank algorithm in Python

• Applying the PageRank implementation to real data

258 Web Searches with PageRank

By the end of this chapter, you will have learned how PageRank works, the linear algebra
basis for it, why it is so effective, and how to implement the algorithm and apply it to
real-world data.

Important Note
Please navigate to the graphic bundle link to refer to the color images for
this chapter.

The Development of Search Engines over time
In this section, we will learn about the development of modern search engines on the
internet. This will set the stage to learn about Google's PageRank algorithm. But, before
we do that, let's briefly learn how older search engines worked and their shortcomings so
that we can see why we need to tap into some deeper mathematics to solve the problem
of ranking websites based on searches.

In the early 1990s, search engines were relatively simple. The search engine companies
maintained databases of as many websites as they could. Users would search a word, say,
chicken, and the search engines would search for websites using the word chicken
and rank them based on how many times the word chicken appeared on the website.
As you might suspect, this isn't necessarily the best approach.

There are several problems with these simple methods:

• Web pages where a certain search word occurs frequently are not necessarily what
people are seeking when they do a web search. An FDA agricultural report might
say chicken dozens of times, but not many users are likely to want agricultural
reports.

• It automatically favored web pages with long passages of text, which were more
likely to have more occurrences of chicken.

• There was little natural language processing, so a search of chicken might not
return websites with chickens or chicks.

• Unpopular, little-used web pages with the word chicken were just as likely to
show up in search results as popular websites that many users visit.

• It was easy to game the system: unscrupulous webmasters would add huge passages
of transparent text full of commonly searched words such as chicken written
hundreds of times or store such words in large passages of metadata just to drive
traffic to their website.

The Development of Search Engines over time 259

Through the 90s, a bit more diversity in methods proliferated. One innovation was to
allow searches with Boolean functions such as AND, OR, and NOT—so, you could search
the following:

• chicken AND sandwich returns web pages with both words that hungry users
may be seeking.

• chicken OR rooster returns web pages with either word that users interested
in animals may be seeking.

• chicken AND NOT egg returns web pages with the word chicken but not the
word egg to filter out web pages related to eggs from the web pages mentioning
chickens.

In addition, some search engines introduced fuzzy logic, which could return web pages
that are relevant to the search but not strictly satisfying the search. For example, a search
of chicken may return web pages with the word chicken as well as web pages with the
words chicken, chick, chicks, or even nuggets, wings, or poultry.

These innovations improved the quality of web searches, but they were still not nearly
as effective as today's search engines, which seem to have a knack for returning the web
pages you actually want.

This is not meant to be a comprehensive description of search engines in the mid-to-early
1990s, as there were some other algorithms used by the many search engines of the time—
Yahoo, Lycos, Excite, and the like. But this should give you an understanding that the
relatively simplistic search algorithms of the time period had many challenges.

To make things worse, the internet was growing exponentially, meaning web searches
began returning hundreds, thousands, even millions of web pages. If search engines were
returning so many web pages without using some more reasonable criteria for deciding
how relevant or how important certain web pages were to move them to the top of the
list when users searched, they were not very likely to return the right web pages without
requiring users to sift through pages and pages of search results.

These failings prompted the need for a different kind of ranking method to move the
"best" web pages to the top of the list when users search. With this in mind, we will
continue to see how modern ranking algorithms, PageRank in particular, use linear
algebra and probability to find the importance of web pages on the basis of which other
websites link to them.

260 Web Searches with PageRank

Google PageRank II
In this section, we will continue learning about Google's PageRank algorithm, which
we started to look at in Chapter 5, Elements in Discrete Probability. As we discussed in
that chapter, two students at Stanford University and later founders of Google, Larry
Page and Sergey Brin, along with some researchers at Stanford, Rajeev Motwani and
Terry Winograd, tapped into some existing academic literature on information retrieval
in linked documents and merged several innovations to adapt the ideas for use in web
searches.

The algorithm they developed, PageRank, was so effective that Google soon became totally
dominant in the field of search engines in the late 1990s to early 2000s. This innovative
PageRank algorithm still forms a part of Google's searching methods, although their
methods have, of course, progressed significantly in the past 20 years by implementing
information from user histories, user location, and the like in determining which websites
are most likely relevant to users.

Without further ado, let's dive into learning just how PageRank works!

In a basic search engine using the PageRank algorithm, a user searches some terms and all
the web pages with the terms, and perhaps web pages matching according to some fuzzy
criteria, are returned. Then, the PageRanks of all the websites are found and sorted from
highest to lowest. Finally, the results are displayed to the user in this descending order.
Ideally, this means the most relevant websites will be shown to the user first.

To see how PageRank works under the hood, let's first quickly review what we learned
about the PageRank algorithm in Chapter 5, Elements of Discrete Probability. Suppose
we have an "internet" made up of a set of web pages. We will call the "internet" I and
assume it has some finite number, N, of distinct web pages. In the real internet, this
N numbers in the billions! We will refer to these web pages as follows:

𝐼𝐼 = {𝑊𝑊1,𝑊𝑊2,… ,𝑊𝑊𝑁𝑁}

On I, we define two functions:

• Outgoing links, C: I → {0, 1, 2, …, N - 1}, where C(Wj) is the number of links leaving
the jth web page, where self-links do not count and multiple links to the same web
page count as a single link.

• PageRank, PR: I → [0,1], where we have PR(Wj). It is calculated as follows:

𝑃𝑃𝑃𝑃(𝑊𝑊𝑗𝑗) = 1 − 𝑑𝑑
𝑁𝑁 + 𝑑𝑑 ∑ 𝑃𝑃𝑃𝑃(𝑊𝑊𝑖𝑖)

𝐶𝐶(𝑊𝑊𝑖𝑖)
𝑊𝑊𝑖𝑖∈𝑀𝑀(𝑊𝑊𝑗𝑗)

,

Google PageRank II 261

Here, M(Wj) is the set of web pages linking to Wj. In other words, PageRank is (1 – d)/N
plus d times the sum of ratios of PageRank to outgoing links for each other web page
linking to Wj. The constant d ∈ (0,1) is called the damping factor. The authors set d = 0.85
in their original paper, although Google may have adjusted it since then. Regardless of the
value of d, it can be shown that the function PR is a probability mass function, assigning
probabilities to W1, W2, ..., WN. Note that, by definition, the probabilities assigned by
a probability mass function sum to 1.

Important Note
Note that there is some confusion in the literature about the first term of the PR
calculation: sometimes the N is left out of the denominator. This does not have
an important practical impact since we simply rank websites in descending
order based on the outputs. However, the resulting PageRanks do not form
a probability mass function without this N and so it is mathematically not quite
so clean.

The idea behind PageRank is to take an imaginary "person" navigating this "internet"
who will randomly click links and will eventually stop on a certain web page. The value
d represents the probability that this person will click the next link at each step. The
PageRank of a web page, PR(Wi), represents the probability that this randomly clicking
surfer will stop on web page Wi.

The PageRank algorithm initializes all the PageRanks to be equal, meaning they will
initially be 1/N since they must add up to 1 in order for them to make up a probability
distribution. Then, the PageRank algorithm will redo this calculation for each web page
periodically to update the PageRank of each website based on changes in link structure
and traffic patterns over time.

Important Note
In many implementations of the PageRank algorithm, it will actually compute
the formulas over and over until all the PageRanks converge to a steady state
where further calculations of the formula result in the same outputs, which
tends to happen. When patterns in the links change, it is possible to carry out
this procedure again to find the new PageRanks.

262 Web Searches with PageRank

In Chapter 5, Elements of Discrete Probability, we created a small "internet" of just five web
pages with a fixed linking structure. We have replicated the figure of this small "internet"
represented as a directed graph in Figure 11.1, but with three changes:

• We have color-coded the vertices representing web pages and edges representing
links between web pages.

• We have separated bidirectional arrows into separate arrows when two web pages
each have links to the opposite web page.

• We added weights to the edges representing the amount of the PageRank of
a source website, Wi, will be passed on to the web pages they link: that is, simply
the following:

1
𝐶𝐶(𝑊𝑊𝑖𝑖)

This weight has a practical impact: if the web page simply links a huge number of other
web pages, the full PageRank of the web page with the links will not have such a big
impact on the rest of the "internet." This prevents a strategy for gaming the system:
without this, web pages would try to have themselves added to giant web page indexes,
which could increase their PageRank for a reason that probably has little to do with how
relevant the web page is to the user's search.

This makes our diagram a directed network rather than a directed graph, as we see in the
following figure:

Figure 11.1 – A directed network representing an "internet" of five web pages, their links, and the
proportion of PageRank carried over each link. All web pages, links, and weights are color-coded

Google PageRank II 263

In Chapter 5, Elements of Discrete Probability, we initialized the PageRanks to 1/5 = 0.2
and used the linking structure to compute the PageRanks using the preceding functions
for one iteration. The obtained PageRank are shown as follows:

𝑃𝑃𝑃𝑃(𝑊𝑊1) = 0.34

𝑃𝑃𝑃𝑃(𝑊𝑊2) = 0.07

𝑃𝑃𝑃𝑃(𝑊𝑊3) = 0.07

𝑃𝑃𝑃𝑃(𝑊𝑊4) = 0.38

𝑃𝑃𝑃𝑃(𝑊𝑊5) = 0.13

But we did this calculation by hand, which is not ideal, so we would like to replicate this
calculation with matrix arithmetic.

As we learned in Chapter 8, Storage and Feature Extraction of Graphs, Trees, and Networks,
the directed network of our small "internet" can be represented as a matrix:

Figure 11.2 – The transition probability matrix of our small "internet"

We learned previously that matrix A is usually called the cost matrix of the network but
that it tends to be called a different name in different areas. Here, matrix A is typically
called the transition probability matrix or importance matrix. It shows how PageRank
transmits across all the outgoing links from each web page.

Each row of the transition probability matrix represents the proportion of the PageRank of
a specific web page that will be transmitted to other web pages in future iterations, so they
must add up to 1 to split the transmission of PageRank into parts making up the whole
PageRank. Each column represents the incoming PageRank proportions transmitted from
other web pages to a specific web page, so there is no need for them to add up to 1.

264 Web Searches with PageRank

As we systematize these calculations into matrix algebra, we also need to represent the
PageRanks as a vector. We will start with the initialized PageRanks all equal to 1/N = 0.5.
We can represent this as follows:

Figure 11.3 – The initial PageRank vector

We'll define another matrix, U, which will actually be used in the PageRank calculations,
and call it the update matrix, using the following formula:

Figure 11.4 – The matrix used in PageRank calculations

Recall from what we learned in Chapter 6, Computational Algorithms in Linear Algebra,
that the T superscript indicates the transpose of the matrix where the rows are swapped
with the columns, and we learned how to add and multiply matrices. We can replicate the
PageRank formulas for all the websites in the next iteration at once as follows:

𝐯𝐯𝑖𝑖 = 𝐔𝐔𝐯𝐯𝑖𝑖−1

Let's write some Python code to apply this formula. Recall that the way we learned how
to do matrix multiplication is to use NumPy for our small "internet" of five web pages,
N = 5, and the default damping factor, d = 0.85:

import the NumPy library
import numpy

transition probability matrix
A = numpy.array([[0, 0.25, 0.25, 0.25, 0.25],
 [0.5, 0, 0, 0.5, 0],
 [0.33, 0, 0, 0.33, 0.33],
 [1, 0, 0, 0, 0],
 [0, 0, 0, 1, 0]])

Google PageRank II 265

initialize the PageRank vector
v = numpy.array([[0.2], [0.2], [0.2], [0.2], [0.2]])

the damping factor
d = 0.85

the size of the "Internet"
N = 5

compute the update matrix
U = d * A.T + (1 - d) / N

compute the new PageRank vector
v = numpy.dot(U, v)

print the new PageRank vector
print(v)

In this code, we first added the transition probability matrix and initialized the PageRank
vector, damping factor, and size of the "internet." Then, we computed the update matrix.
Finally, we computed the new PageRank vector after one iteration and printed it.

The output of the code is as follows:

[[0.3411]
 [0.0725]
 [0.0725]
 [0.3836]
 [0.1286]]

Rounding these values to two decimal places gives exactly the same as what we calculated
by hand in Chapter 5, Elements of Discrete Probability, and replicated in the present
chapter previously.

As we mentioned, it is common with PageRank implementations to run the PageRank
update over and over until they stop changing:

initialize the PageRank vector
v = numpy.array([[0.2], [0.2], [0.2], [0.2], [0.2]])

print the initial vector
print('PageRank vector', 0, 'is', v.T)

266 Web Searches with PageRank

compute the PageRank vector for 15 iterations
for i in range(15):
 # compute the next PageRank vector
 v = numpy.dot(U, v)

 # round the PageRank vector to 3 places
 v = numpy.round(v, 3)

 # print the PageRank vector
 print('PageRank vector', i + 1, 'is', v.T)

This code initializes the PageRank vector, prints it, carries out the PageRank update for
15 iterations, rounds them, and prints each one. We print the transpose of the PageRank
vector rather than the original simply so that the output does not take up too much space,
which allows us to observe patterns in the evolution of the PageRanks more readily.

The output of the code is as follows:

PageRank vector 0 is [[0.2 0.2 0.2 0.2 0.2]]
PageRank vector 1 is [[0.341 0.073 0.073 0.384 0.129]]
PageRank vector 2 is [[0.408 0.102 0.102 0.264 0.123]]
PageRank vector 3 is [[0.326 0.117 0.117 0.293 0.145]]
PageRank vector 4 is [[0.362 0.099 0.099 0.305 0.132]]
PageRank vector 5 is [[0.359 0.107 0.107 0.289 0.135]]
PageRank vector 6 is [[0.351 0.106 0.106 0.296 0.136]]
PageRank vector 7 is [[0.356 0.104 0.104 0.295 0.134]]
PageRank vector 8 is [[0.354 0.105 0.105 0.293 0.135]]
PageRank vector 9 is [[0.353 0.105 0.105 0.294 0.134]]
PageRank vector 10 is [[0.354 0.105 0.105 0.293 0.134]]
PageRank vector 11 is [[0.353 0.105 0.105 0.293 0.134]]
PageRank vector 12 is [[0.353 0.105 0.105 0.293 0.134]]
PageRank vector 13 is [[0.353 0.105 0.105 0.293 0.134]]
PageRank vector 14 is [[0.353 0.105 0.105 0.293 0.134]]
PageRank vector 15 is [[0.353 0.105 0.105 0.293 0.134]]

Google PageRank II 267

As you can see, repeating the update over and over results in the PageRank vector
converging to a certain set of numbers and not budging any further after about 10
iterations, as follows:

Figure 11.5 – The PageRank vector to which the PageRank updates converged

It should be stated that the calculations do continue to cause the PageRank vector to
change, but the changes occur more than three places beyond the decimal point. So,
practically speaking, we have found a steady state or equilibrium for the PageRanks.

What does all of this mean? If the five pages were returned by our search engine and
we wanted to rank them and display the web pages sorted by PageRank from highest to
lowest, our user would see web page W1, followed by W4, followed by W5, followed by W2
and W3. We could break the tie at the bottom by realizing there is actually a difference in
the PageRank if we look further beyond the decimal point. In a large-scale problem such
as the actual internet, it would be incredibly unlikely to actually have equal PageRanks.
However, if they were equal to the level of precision we have chosen to use for our
computations, randomly breaking the tie would be practically fine.

As you have seen, we had to do a lot of computations to come to the preceding conclusion
for a small five-web page "internet." Imagine the number of computations carried out by
Google when they use the PageRank algorithm on the real internet and its billions of web
pages before showing you the results for your query/search!

In this section, we learned about how the PageRank algorithm uses linear algebra to assign
ranks to web pages returned by a web search. This allows the highly ranked web pages to
be shown at the top of the list so that users can see the most relevant web pages first rather
than having to go browsing through pages upon pages of irrelevant search results to find
what they need.

We have applied the PageRank ideas to a small problem, but we will continue to build
a realistic implementation of the PageRank algorithm in Python in the next section.

268 Web Searches with PageRank

Implementing the PageRank algorithm
in Python
In this section, we will take the insights we learned about the PageRank algorithm in the
previous sections to write an effective Python implementation of the algorithm.

As we saw previously, the idea of the PageRank algorithm is to do some calculations to
update the PageRank vectors over and over until they reach a steady-state PageRank
vector. But we just ran it 15 times, looked at the numbers, and stopped when the updates
become so small as to be insignificant.

However, there are a few obstacles to implementing this on a real, large-scale problem:

• If the "internet" of web pages is large, such as with the real internet, we could not
really look at millions or billions of PageRanks in the updates and find when they
have stopped changing.

• We cannot know in advance how many iterations we need to run for the PageRanks
to converge to a steady state.

• We manually defined the initial state of the PageRank vector, which is impractical
for a huge "internet."

• It depended specifically on the linking structure of the "internet" we considered,
which would change in time in reality.

• We specified the size of the internet, N, and damping factor, d, manually.

In realistic implementations, we need to deal with all of these issues with our code:

• For problems 1–2, we need to find a way to automate the detection of when the
PageRank algorithm converges to a steady state.

• For problem 3, we need to initialize the PageRank vector programmatically.

• For problems 4–5, we can write a function that takes the transition probability
matrix A and damping factor d as inputs and finds the size of the "internet," N,
from the matrix.

These latter two solutions are easy to implement, but solving the first two problems
requires us to introduce some additional mathematics. The Euclidean norm of a vector
is as follows:

𝐯𝐯 = [𝑣𝑣1 𝑣𝑣2 ⋯ 𝑣𝑣𝑁𝑁]𝑇𝑇

Implementing the PageRank algorithm in Python 269

It measures the length of a vector in an N-dimensional space and is computed as follows:

‖𝐯𝐯‖ = √𝐯𝐯 ⋅ 𝐯𝐯 = √𝑣𝑣12 + 𝑣𝑣22 +⋯+ 𝑣𝑣𝑁𝑁𝑡𝑡

Notice each component of the vector adds a positive value to the norm. If the components
are near 0, then the norm will be near 0. If some of the components are large, then the
norm will be large. This idea can be used to compute the distance between two vectors as
well. If we define vector w similarly, the distance between vectors v and w is as follows:

‖𝐯𝐯 −𝐰𝐰‖ = √(𝑣𝑣1 − 𝑤𝑤1)2 + (𝑣𝑣2 −𝑤𝑤2)2 +⋯+ (𝑣𝑣𝑁𝑁 −𝑤𝑤𝑁𝑁)2

So, here, if the vj – wj differences are small, then the distance will small.

This mathematical tool gives us a way to measure how different vectors are. As we have
learned, the PageRank algorithm is an iterative process that updates PageRank vectors
over and over until they settle into a steady state with the following formula:

𝐯𝐯𝑖𝑖 = 𝐔𝐔𝐯𝐯𝑖𝑖−1

To solve problems 1–2 outlined previously, we can compute updates until the distance
between vectors vi and vi – 1 is very small. Our function can actually accept an input of
a small number, ε, called the error threshold and have the algorithm stop updating the
PageRank vectors when the differences are smaller than this small error term, that is,
when the following is true:

‖𝐯𝐯𝑖𝑖 − 𝐯𝐯𝑖𝑖−1‖ < 𝜀𝜀

This means we will need to save the PageRank vector from before each update so that
we can find the difference between them.

Let's write some code implementing solutions to all of these problems by writing the
PageRank algorithm as a function. It will be a little long, so we will break it down into
parts and explain each part as we go. First, we write some documentation about the
function:

The PageRank algorithm for ranking search results
#
INPUTS
A - the transition probability matrix
d - the damping factor, default = 0.85
eps - the error threshold, default = 0.0005
maxIterations - the maximum iterations it can run before
 # stopping

270 Web Searches with PageRank

verbose - if true, the algorithm prints the progress of
 # PageRank

OUTPUTS
vNew - the steady state PageRank vector

Next, we define the function, find the size of the "internet," and initialize several variables
that we need:

def PageRank(A, d = 0.85, eps = 0.0005, maxIterations,
 verbose = False):
 # find the size of the "Internet"
 N = A.shape[0]

 # initialize the old and new PageRank vectors
 vOld = numpy.ones([N])
 vNew = numpy.ones([N])/N

 # initialize a counter
 i = 0

Then, we find the update matrix, U:

 # compute the update matrix
 U = d * A.T + (1 - d) / N

Then, we run the update over and over until the change in the PageRank vectors from
iteration to iteration is sufficiently small:

 while numpy.linalg.norm(vOld - vNew) >= eps:
 # if the verbose flag is true, print the progress at
 # each iteration
 if verbose:
 print('At iteration', i, 'the error is',
 numpy.round(numpy.linalg.norm(vOld - vNew),
 3), 'with PageRank', numpy.round(vNew, 3))

 # save the current PageRank as the old PageRank
 vOld = vNew

 # update the PageRank vector

Implementing the PageRank algorithm in Python 271

 vNew = numpy.dot(U, vOld)

 # increment the counter
 i += 1

If the code does not converge within maxIterations, we will stop, print the error, and
return the current PageRank vector and iteration:

if it runs too long before converging, stop and notify the
 # user
 if i == maxIterations:
 print('The PageRank algorithm ran for',
 maxIterations, 'with error',
 numpy.round(numpy.linalg.norm(vOld - vNew),
 3))

 # return the PageRank vector and the
 return vNew, i

Finally, we return the steady-state PageRank vector and the number of iterations it took to
converge:

 # return the steady state PageRank vector and iteration
 # number
 return vNew, i

Let's see whether it works with the example we used previously:

transition probability matrix
A = numpy.array([[0, 1/4, 1/4, 1/4, 1/4],
 [1/2, 0, 0, 1/2, 0],
 [1/3, 0, 0, 1/3, 1/3],
 [1, 0, 0, 0, 0],
 [0, 0, 0, 1, 0]])

Run the PageRank algorithm with default settings
PageRank(A)

The output is as follows:

(array([0.3565286 , 0.10584025, 0.10584025, 0.29600666,
 0.13578424]), 11)

272 Web Searches with PageRank

We confirm this gives the same results we found previously in 11 iterations. So, what else
can we do with the algorithm?

Suppose the structure of our small "internet" changes by changing the linking structure,
which happens all the time in reality when people modify their web pages and create new
web pages. Search engines periodically crawl the internet to find these changes.

If web page W3 suddenly went viral and all the other web pages added links to it, this new
"internet" could be represented by the following directed network:

Figure 11.6 – A directed network representing an "internet" of five web pages after web page W3 has gone
viral and been linked on every other web page in the "internet"

Let's try PageRank again to see how the PageRanks will change due to web page
W3 becoming more popular. We will use the same calculations as previously but use
a different transition probability matrix corresponding to the new state of our small
internet:

transition probability matrix
B = numpy.array([[0, 1/4, 1/4, 1/4, 1/4],
 [1/3, 0, 1/3, 1/3, 0],
 [1/3, 0, 0, 1/3, 1/3],
 [1/2, 0, 1/2, 0, 0],
 [0, 0, 1/2, 1/2, 0]])

Run the PageRank algorithm with default settings
PageRank(B, verbose = True)

Applying the Algorithm to Real Data 273

The output is as follows:

(array([0.2365497 , 0.08030807, 0.27603383, 0.24860661,
 0.15850179]), 8)

Since web page W3 has increased in popularity, its PageRank should go up because it is
more likely that users are looking for that web page. As you can see, its PageRank moved
up from 0.105 to 0.276.

In this section, we have written a realistic implementation of the PageRank algorithm,
which takes in a transition probability matrix, initializes the PageRanks of each web page
to the same proportion, and returns the steady-state PageRank as well as the number of
iterations it took to converge.

In the next section, we will use our implementation on a much larger scale problem to see
how well it works.

Applying the Algorithm to Real Data
Let's use our Python implementation of the PageRank algorithm to some larger-scale data.
We will use a dataset shared by J. Kleinberg at Cornell by crawling the web to find web
pages containing the word California. It is a text file in the following form:

Type Source Destination
n 0 http://www.berkeley.edu/
n 1 http://www.caltech.edu/
…
n 9663 http://www.cs.ucl.ac.uk/external/P.Dourish/hotlist.html
e 0 449
e 0 450
…
e 9663 7907

The first part contains 9,663 web pages that have the word California, and the rest is
an adjacency list for the graph representing the "internet" of these 9,663 web pages. For
example, take the following line:

e 0 499

This means web page 0 has a link to web page 499. In order to implement PageRank on
this dataset, we need to create an adjacency matrix.

274 Web Searches with PageRank

Let's use some Python code to read this data file into a pandas DataFrame and display it:

import the pandas library
import pandas

read the txt file into a dataframe
data = pandas.read_csv("California.txt", delimiter=' ')

display the dataframe
data

The output is as follows:

 Type Source Destination
0 n 0 http://www.berkeley.edu/
1 n 1 http://www.caltech.edu/
2 n 2 http://www.realestatenet.com/
3 n 3 http://www.ucsb.edu/
4 n 4 http://www.washingtonpost.com/wp-srv/
 national/...
...
25809 e 9663 1806
25810 e 9663 266
25811 e 9663 7905
25812 e 9663 70
25813 e 9663 7907

25814 rows × 3 columns

Next, we preprocess the data to extract the adjacency list, drop all the e strings in the
first column, convert the remaining numerical portion into a NumPy array, and store the
numbers as integers:
preprocess the data

select only the rows with type 'e'
adjacencies = data.loc[data['Type'] == 'e']

drop the 'Type' column
adjacencies = adjacencies.drop(columns = 'Type')

convert the adjacency list to a NumPy array
adjacencies = adjacencies.to_numpy()

Applying the Algorithm to Real Data 275

convert the adjacency list to integers
adjacencies = adjacencies.astype('int')

print the adjacency list
print(adjacencies)

The output is as follows:

[[0 449]
 [0 450]
 [0 451]
 ...
 [9663 7905]
 [9663 70]
 [9663 7907]]

Next, let's convert the adjacency list into an adjacency matrix:

convert the adjacency list to an adjacency matrix

find the number of webpages and initialize A
N = numpy.max(adjacencies) + 1
A = numpy.zeros([N, N])

iterate over the rows of the adjacency list
for k in range(adjacencies.shape[0]):
 # find the adjacent vertex numbers
 i, j = adjacencies[k,]

 # put 1 in the adjacency matrix
 A[i, j] = 1

Next, we need to convert C into the transition probability matrix by dividing each 1
corresponding to an outgoing link by the total number of outgoing links from that web
page. In other words, we divide each row by its row sum:

convert A to the transition probability matrix

divide each row of A by its row sum
rowSums = A.sum(axis = 1)[:,None]

divide A by the rowSums
C = numpy.divide(A, rowSums, where = rowSums != 0)

276 Web Searches with PageRank

Next, let's run PageRank on this transition probability matrix:

run PageRank
v, i = PageRank(A)

print the steady state PageRank vector and iteration number
print(v)
print(i)

The output is as follows:

[2.79688870e-05 6.29671046e-06 2.06171425e-07 ... 9.48337601e-
 08 9.48337601e-08 9.48337601e-08]
14

As we can see, feeding this large transition probability matrix of dimension 9,663 by 9,663
converges to a steady-state PageRank vector in 14 iterations.

We will then sort the PageRanks from highest to lowest and save the indices of the
sorted list:

sort the PageRanks in ascending order
ranks = numpy.argsort(v)

find the PageRanks in descending order
ranks = numpy.flip(ranks)

Then, let's return the top 10 web pages containing the word California:

return the URLs of the top few webpages
rankedPages = pandas.DataFrame(columns = ['Type', 'Source',
 'Destination'])

add the top 10-ranked webpages
for i in range(10):
 row = data.loc[(data['Type'] == 'n')
 & (data['Source'] == ranks[i])]
 rankedPages = rankedPages.append(row)

display the top 10
rankedPages.drop(columns = ['Type', 'Source'])

Applying the Algorithm to Real Data 277

A screenshot of the output is as follows:

Figure 11.7 – The top 10 web pages containing the word "California," ranked from
highest to lowest PageRank

These results make quite a lot of sense. Rather than just returning web pages that say
California frequently, these websites are all prominent entities in California. Most
of the websites are from universities in the University of California system, which are
all quite large universities that are linked by many other web pages. The last site is
the Southern California Association of Governors, which is a metropolitan planning
organization that provides large amounts of public data, meaning it is likely linked to by
many web pages.

We have now applied our Python implementation of the PageRank algorithm to
a real-world search example. Surprisingly, it converged very quickly, within a few seconds
on a standard PC.

278 Web Searches with PageRank

Summary
In this chapter, we learned about the PageRank algorithm developed in the late 1990s by
the future founders of Google and their colleagues at Stanford. It revolutionized the world
of search engines by providing an effective way to sort search results in such a way that
much more relevant web pages to users' searches could be displayed at the top of the list.

We began by reviewing how search engines worked before PageRank, some prior
innovations, and the general shortcomings of web search before PageRank.

Then, we moved on to applying a single PageRank update for a small "internet" of just five
web pages introduced in Chapter 5, Elements of Discrete Probability. Instead of computing
the formulas one by one by hand, we wrote a matrix form of the calculation and showed
that it replicated the results from the previous chapter. We also learned that PageRank
usually runs over and over until the PageRank vector converges to a steady state, which
we did by running the updates for an arbitrary number of times until we saw it converge
by inspection.

In the next section, we wrote a much better Python implementation of the PageRank
algorithm, which detected convergence automatically by using a while loop that ran
until the PageRank vectors on two successive iterations were sufficiently similar using the
Euclidean norm. Next, we considered a scenario where one of the web pages in our small
"internet" went viral and accumulated links from the other web pages, which resulted in
the PageRank of this web page increasing because it had become a more likely landing
spot for users.

Lastly, we brought in a large, real dataset of 9,663 web pages containing the word
California and an adjacency list corresponding to links from one web page to another.
We preprocessed the data to turn the adjacency list into an adjacency matrix. We further
processed that into a transition probability matrix and ran the PageRank algorithm on
this large example. It converged quickly and yielded some pretty intuitive results, ranking
some prominent websites at the top.

In the next and final chapter of the book, we will learn about the method of principal
components analysis (PCA), which is a method for reducing the dimensionality of data.
This is quite an important task in machine learning.

12
Principal

Component Analysis
with Scikit-Learn

In this chapter, we will learn about principal component analysis (PCA), which is a core
machine learning technique that reduces the dimensionality of large datasets to determine
which variables can best explain strong patterns in data. We will first introduce some
mathematical concepts about orthogonal matrices and bases. Then, we will explain the
method and look at the scikit-learn library's implementation of PCA. Lastly, we will apply
PCA to some real-world data.

In this chapter, we will cover the following topics:

• Understanding eigenvalues, eigenvectors, and orthogonal bases

• The principal component analysis approach to dimensionality reduction

• The scikit-learn implementation of PCA

• An application of PCA to real-world data

By the end of this chapter, you will have learned the intuition and mathematics behind
PCA. You will also learn about the scikit-learn library's implementation of PCA and apply
it to a real-world dataset.

280 Principal Component Analysis with Scikit-Learn

Important note
Please navigate to the graphic bundle link to find the color images for
this chapter.

Understanding eigenvalues, eigenvectors,
and orthogonal bases
In this section, we will learn about the mathematical concepts behind PCA, such as
eigenvalues, eigenvectors, and orthogonal bases. We will also learn how to find the
eigenvalues and eigenvectors for a given matrix.

Many real-world machine learning problems involve working with a lot of feature
variables; sometimes in the millions. This not only makes it harder for us to store the data
due to its massive size but also leads to the slower training of machine learning models,
making it harder for us to find an optimal solution. In addition, there is
a chance that you are overfitting your model to the data. This problem is often referred to
as the curse of dimensionality in the field of machine learning.

A solution to this curse of dimensionality is to reduce the dimensionality of datasets
that have many feature variables. Let's try to understand this concept with the help of
an example dataset: pizza.csv. This dataset can have 7 feature variables and 300
observations, which are categorized into 10 classes – pizza produced by 10 different
pizza companies (companies A, B, C, D, E, F, G, H, I, and J). The original dataset along
with the description can be found at https://www.kaggle.com/shishir349/
can-pizza-be-healthy.

The columns of the dataset are as follows:

• brand: The names of the different pizza brands

• moisture: The water content per 100 grams of pizza

• protein: The protein content per 100 grams of pizza

• fat: The fat content per 100 grams of pizza

• ash: The ash content per 100 grams of pizza

• sodium: The sodium content per 100 grams of pizza

• carbohydrates: The carbohydrate content per 100 grams of pizza

• calories: The calorie content per 100 grams of pizza

https://www.kaggle.com/shishir349/can-pizza-be-healthy
https://www.kaggle.com/shishir349/can-pizza-be-healthy

Understanding eigenvalues, eigenvectors, and orthogonal bases 281

We will first import the dataset before we begin exploring it and later apply PCA to it to
see how different pizza companies produce pizzas with different nutrient contents:

import pandas as pd
dataset = pd.read_csv('pizza.csv')
dataset.head()

We get the following table as the output when the preceding code is executed:

Figure 12.1 – Feature variables for the pizza dataset

We have seven feature variables in the preceding example; even though this sounds like
a small number, it can have many correlated variables (Figure 12.2), which will increase
the number of variables without adding much value. Dropping one or more of these
features or combining our input variables will help in reducing the dimensions and make
the problem more tractable. This is called feature elimination. A downside of this method
is that we will eliminate any benefits that the dropped variables would have brought to
our model. The following method is used to find the pairwise correlation between all the
columns in a DataFrame:

dataset.corr()

The preceding code generates a correlation matrix as shown in the following figure:

Figure 12.2 – Correlation matrix for the pizza dataset

A correlation matrix is a square and symmetrical matrix that has a value of 1 along

282 Principal Component Analysis with Scikit-Learn

its diagonal, which shows that each variable is perfectly correlated to itself. A correlation
coefficient of 1 means that two variables are highly positively correlated, and a correlation
coefficient value of -1 suggests that they are negatively correlated – when one value
increases, the other decreases, and vice versa. Usually, it is hard to find variables are have
a correlation coefficient of 1, so the closer it is to 1 or -1, the stronger the relationship, and
vice versa.

The same variables are present in both the rows and columns of this matrix and show
how each of the variables are correlated to another variable in the dataset. For example,
the correlation coefficient between the protein and ash content is 0.824, which shows that
they are highly positively correlated. This means that if a pizza sample has higher protein
content, then it is more likely to have higher ash content, and vice versa.

Another way to achieve dimensionality reduction is to perform feature extraction on
the dataset. In this method, we create new feature variables that are a combination of the
original independent feature variables. We then rank these new feature variables based on
how well they capture the variation in the original dataset. Here we have an option to only
keep a certain number of the new feature variables, dropping the least important ones and
still retaining the valuable parts of the old feature variables. PCA is used for this purpose
and is a feature extraction algorithm.

Hence, the goal of dimensionality reduction is to reduce the number of feature variables
while preserving as much information as possible for a dataset, which naturally comes at
the expense of accuracy. This can be summed up as follows: increasing the simplicity of
the machine learning model at the cost of a little reduction in accuracy.

Now that we have high-level knowledge of the problems that arise due to higher
dimensions and know that the number of dimensions can be reduced, we will investigate
the mathematical basis for these concepts.

An eigenvector v of a matrix A is a vector with a very special property: if you multiply the
eigenvector by the matrix A, it maintains its original direction (the direction in which the
vector was pointing initially before the matrix multiplication), as shown in Figure 12.3
and Figure 12.4. However, the multiplication may squish, or stretch, and may reverse the
eigenvector by a scalar factor. This scalar factor by which the eigenvector is squished
or stretched is called an eigenvalue. The mathematical representation is shown here:

Figure 12.3 – Mathematical representation

Understanding eigenvalues, eigenvectors, and orthogonal bases 283

By solving the preceding equation, we can find the value of the eigenvalues and the
corresponding eigenvectors of A. The equation to solve to find the eigenvalues and
eigenvectors is shown here:

Av = (λI)v

(A – λI)v = 0

Here I is the identity matrix and v is a non-zero vector.

Non-zero solutions exist only if (A – λI) is a singular matrix, which means that the
determinant of (A – λI) is 0. Hence, the eigenvalues of A are roots of the polynomial
det(A – λI). The number of eigenvalues is at most the number of dimensions. Figure 12.3
shows a vector v in a two-dimensional X-Y coordinate plane:

𝐯𝐯 = [11]

The preceding vector is plotted as follows:

Figure 12.4 – Vector is a two-dimensional space

284 Principal Component Analysis with Scikit-Learn

Now, let's apply a transformation A to the vector shown previously:

𝐀𝐀 = [1 1
1 1] [

1
1]

𝐀𝐀𝐀𝐀 = [1 1
1 1] [

1
1] = [22] = 2 [11] = 𝜆𝜆𝐀𝐀

From the preceding computation, we can see that multiplying by A doubled the length of
vector v, but the direction did not change, as shown in Figure 12.5:

Figure 12.5 – Vector after undergoing transformation

Hence, we can say that the eigenvalue is 2 and the eigenvector is [11] . This idea of

eigenvalues and eigenvectors holds true for higher dimensions as well.

Let's try to find the eigenvalues and eigenvectors for a matrix A using Python:

A = [3 1
1 3]

Understanding eigenvalues, eigenvectors, and orthogonal bases 285

The code for finding eigenvalues and vectors for the preceding matrix is as follows:

import numpy as np
A = np.array([[3,1], [1,3]])
l, v = np.linalg.eig(A)
print("The eigenvalues are:\n ",l)
print("The eigenvectors are:\n ", v)

The output gives us the eigenvalues as well as the corresponding eigenvectors:

The eigenvalues are:
 [4. 2.]
The eigenvectors are:
 [[0.70710678 -0.70710678]
 [0.70710678 0.70710678]]

After going through the preceding exercise, you might ask a very important question: why
do we need to transform vectors? Transformations are important since they can simplify
problems by just rotating the axes so that we can have a simpler coordinate system to
work with.

Let's now understand what orthogonal bases are. By the end of this section, you will have
the basics that will be helpful while doing PCA for dimensionality reduction.

The standard basis of the d-dimensional space is made up of the following set of vectors:

𝐞𝐞1 = [
1
0
⋮
0
] , 𝐞𝐞2 = [

0
1
⋮
0
] , … , 𝐞𝐞𝑑𝑑 = [

0
0
⋮
1
]

Any datapoint in d-dimensional space (c1, c2, …, cd) can be represented as

[
𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑑𝑑
] = 𝑐𝑐1𝐞𝐞1 + 𝑐𝑐2𝐞𝐞2 +⋯+ 𝑐𝑐𝑑𝑑𝐞𝐞𝑑𝑑

if we choose to represent it in terms of the standard basis. This type of expression is called
a linear combination of the vectors e1, e2, …, ed. In general, any set of d vectors that can
construct all points in the d-dimensional space as linear combinations is called a basis.

286 Principal Component Analysis with Scikit-Learn

The idea of PCA is to change the basis used to represent the points in a more efficient way,
but we are not satisfied with just any basis. Notice that the standard basis has two special
properties:

• Property 1 (unit length): Every basis vector has a length of 1:

‖𝐞𝐞𝑖𝑖‖ = √𝐞𝐞𝑖𝑖 ⋅ 𝐞𝐞𝑖𝑖 = 1

• Property 2 (orthogonality): Every basis vector is orthogonal to every other basis
vector, meaning that, if i ≠ j, then the following is true:

𝐞𝐞𝑖𝑖 ⋅ 𝐞𝐞𝑗𝑗 = 0

Any basis with these two properties is called an orthonormal basis of the space. The
idea of PCA is to change the basis we use to represent the covariance matrix from the
standard basis to a special orthonormal basis made up of its eigenvectors. This basis is
special because we can use the eigenvalues to rank the importance of the eigenvectors
in representing the data, which allows us to reduce the size of the basis by deleting the
vectors from it that have the least impact on the data.

In this section, we learned about mathematical basics such as eigenvalues, eigenvectors,
and orthogonal bases, which we will use in the next section to understand dimensionality
reduction with PCA.

The principal component analysis approach to
dimensionality reduction
In this section, we will learn about the general idea of PCA and go through the steps for
performing PCA on our dataset.

PCA is a method for reducing the dimensions of data by using some ideas from linear
algebra to map the rows from a feature variable matrix X from its default d-dimensional
space to an r-dimensional space for some r < d by making use of principal components
and the subsequent use of these components in understanding the data better.

From the previous section, we know that there are two types of dimensionality reduction
methods: feature elimination and feature extraction. PCA falls into the latter category.
It combines our input feature variables in a way that allows us to drop the least important
variables (out of the new feature variables generated after performing PCA) while still
retaining the valuable parts of all the input variables. In addition, the new feature variables
after performing PCA are independent of one another.

The principal component analysis approach to dimensionality reduction 287

How do you decide on whether to apply PCA to your setup of input feature variables? This
is an important question to answer before getting started with PCA:

• It is a good idea to consider PCA if you are working with a lot of variables and want
to reduce them but are not sure about which variables are the least important ones.

• After applying PCA, the variables become less interpretable since PCA generates
new feature variables that are a combination of the old variables.

• PCA makes sure that the variables generated are linearly independent of each other,
making it easier to apply linear models such as linear regression to a dataset.

Let's try to understand PCA with some visuals before jumping into the details of it. The
process of finding principal components starts with a covariance matrix, which is simply
a correlation matrix that has not been normalized. Then we go on to find the eigenvalues
and eigenvectors for this covariance matrix. This will give us an idea of the most
important (principal) directions and how important these directions are – eigenvectors
with higher eigenvalues are considered more important and they are ranked from most
important to least important.

For our example dataset, let's say our scatterplot is shown in Figure 12.6. There are two
main directions when it comes to the alignment of the datapoints – green and orange.
As we can see, the variance in the data is more in the green direction as compared to the
orange, making it more important:

Figure 12.6 – Initial input feature variables

288 Principal Component Analysis with Scikit-Learn

It would be easier to work with this dataset if we could transform our data to align with
these important directions as shown in Figure 12.7. The data is transformed in such a way
that the green and orange directions now align with our x and y axes. An important thing
to keep in mind is that the principal directions are orthogonal to each other:

Figure 12.7 – Initial input feature variables after being transformed by PCA

It is important to keep in mind that even though the example shown here has two
dimensions, this same principle applies to higher dimensions as well. PCA becomes even
more important when we have a higher dimensional dataset since it helps us to project
our dataset into lower dimensions while preserving most of the details captured by the
original variables.

Let's now move on to looking at PCA with some more mathematical rigor. Assume that
we have a dataset with d-dimensions (or columns) and n rows, where each of the columns
corresponds to an independent variable:

• Step 1: It is important to standardize the dataset before moving ahead with PCA
when different feature variables have different ranges. This makes sure that the
mean for the variable is 0 and the variance is 1. The mathematical equation for
normalizing a variable is shown here:

d1(normalized) =
(𝑑𝑑1 − �̅�𝑑1)

𝑆𝑆

The principal component analysis approach to dimensionality reduction 289

Here d1 is the original data value,�̅�𝑑1 is the mean of the concerned feature variable,
and S is the standard deviation.

We must apply this normalization for the entire dataset (all feature variables).
Let's name this matrix C.

• Step 2: In this step, we take the transpose of matrix C and calculate the value for
CTC. This resulting matrix is called the covariance matrix. The covariance matrix
shows how all the variables in a dataset are related to each other. The covariance
matrix is similar to a correlation matrix, but not scaled to have entries between -1
and 1.

• Step 3: We then calculate the eigenvalues and vectors of this covariance matrix as
shown in the previous section. Let's call the matrix containing the eigenvalues along
the diagonal and zero everywhere else Λ and the matrix containing the eigenvectors
V. These eigenvectors in V define the directions of the new axis, as shown in Figure
12.7. The corresponding eigenvalues determine the importance of each eigenvector
and the information about the distribution of data that it carries:

𝚲𝚲 = [
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑑𝑑

] 𝐕𝐕 = [𝐯𝐯1 𝐯𝐯2 ⋯ 𝐯𝐯𝑑𝑑]

λ1, λ2, ..., λd are the eigenvalues. v1, v2, ..., vd are the eigenvectors in the V matrix.
• Step 4: The eigenvalues are sorted in descending order and so are the eigenvectors.

The sorted matrices are λ* and V*, respectively.

• Step 5: Next, we do matrix calculation to find C* = Cv, where the observations of
this new matrix are a combination of the original variables and the columns of C*
are linearly independent of one another. These new variables are not in an easily
interpretable form, though.

• Step 6: This is the most crucial step, where we need to determine the number of
components of C* that we want to keep. This decision is based on the goal we are
trying to achieve; if we want to plot a high-dimensional dataset in two dimensions,
then we should keep the two most important principal components, and so on.

A more common way to make the decision is to calculate the proportion of variance
explained by the selected principal components. Let's say you want your principal
components to be able to explain 90% of the variation in the dataset. Then, you will
have to include as many principal components as is required for the cumulative
proportion of variance to reach your desired threshold of 90%.

290 Principal Component Analysis with Scikit-Learn

The proportion of variance is obtained by dividing the sum of the eigenvalues of the
selected features by the total sum of all eigenvalues of all features. Let's say that
we selected the first two components out of d principal components; the proportion
of variance would be as follows:

𝜆𝜆1 + 𝜆𝜆2
𝜆𝜆1 + 𝜆𝜆2 + ⋯ + 𝜆𝜆𝑑𝑑

To sum up, PCA helps us to reduce high-dimensional data to lower dimensions, and
this can help with visualization, speeding up model training when it comes to machine
learning, and more. We went through the various steps that are required to apply PCA
to a dataset by making use of the eigenvalue, eigenvector, and orthogonal basis concepts
that were covered in the first section. Lastly, we discussed the idea of the proportion of
variance.

In the next section, we will learn about how to apply PCA to a dataset using the
scikit-learn library.

The scikit-learn implementation of PCA
In this section, we will apply PCA to the pizza.csv dataset (which we explored in the
first section of this chapter) using the scikit-learn library's PCA class.

As discussed in the previous section, there are two ways of choosing how many principal
components to use, and the choice depends on the goal that you are trying to achieve –
whether to reduce the dimensionality to plot something in 2-dimensional/3-dimensional
space or keep enough principal components to achieve a certain proportion of variance.

First, we will implement the method where we can select the number of principal
components we want to keep. We will reduce the 7-dimensional pizza dataset to two
principal components so that we can visualize how the different pizzas produced by 10
different companies are different from each other when it comes to their nutritional
content in a 2D plot instead of worrying about comparing and visualizing data in higher
dimensions.

We will start by importing the dataset and then dropping the brand column from it. This
is done to make sure that all our feature variables are numbers and hence can be scaled/
normalized. We will then create another variable called target, which will contain the
names of the brands of pizzas:

import pandas as pd
dataset = pd.read_csv('pizza.csv')
#Dropping the brand name column before standardizing the data

The scikit-learn implementation of PCA 291

df_num = dataset.drop(["brand"], axis=1)

Setting the brand name column as the target variable
target = dataset['brand']

Now that we have the dataset in order, we will normalize the columns of the dataset
to make sure that the mean for a variable is 0 and the variance is 1. We will use
StandardScaler, available in the scikit-learn library:

#Scaling the data (Step 1)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(df_num)
scaled_data = scaler.transform(df_num)

After the data is scaled, we are ready to apply scikit-learn's PCA class to our dataset to
obtain our principal components. We will restrict the number of principal components to
two, which will enable us to later plot our principal components in a 2-dimensional plot:

#Applying PCA to the scaled data
from sklearn.decomposition import PCA

#Reducing the dimensions to 2 components so that we can have a
 # 2D visualization
pca = PCA(n_components = 2)
pca.fit(scaled_data)
#Applying to our scaled dataset
scaled_data_pca = pca.transform(scaled_data)
#Check the shape of the original dataset and the new dataset
print("The dimensions of the original dataset is: ", scaled_
 data.shape)
print("The dimensions of the dataset after performing PCA is:
 ", scaled_data_pca.shape)

Here is the output:

The dimensions of the original dataset are: (300, 7)
The dimensions of the dataset after performing PCA is: (300,
 2)

292 Principal Component Analysis with Scikit-Learn

Now we have reduced our 7-dimensional dataset to its two principal components,
which can be seen in the preceding dimensions. We will move forward with plotting
the principal components to check whether two principal components were enough to
capture the variability in the dataset – the different nutritional content of pizzas produced
by different companies. We will be using the matplotlib library for the plotting:

#Plotting the principal components
import matplotlib.pyplot as plt
import seaborn as sns

sns.scatterplot(scaled_data_pca[:,0], scaled_data_pca[:,1],
 target)
plt.legend(loc="best")
plt.gca().set_aspect("equal")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.show()

Here is the output:

Figure 12.8 – Principal components of the pizza dataset

The scikit-learn implementation of PCA 293

We plotted the first principal component against the second principal component and
used the target column, which carried the names of the different pizza brands, to color
the datapoints. We can clearly see the distinction between the pizzas produced by different
pizza companies, with minor overlaps.

As mentioned previously, one of the demerits of PCA is that the plot is hard to interpret
since the principal components are a combination of the original dataset.

Now, we will move on to perform PCA in a way where we do not choose the number of
desired principal components; rather, we choose the number of principal components that
add up to a certain desired variance. The Python implementation of this is very similar to
the previous way with very slight changes to the code, as shown here:

import pandas as pd

dataset = pd.read_csv('pizza.csv')

#Dropping the brand name column before standardizing the data
df_num = dataset.drop(["brand"], axis=1)
Setting the brand name column as the target variable
target = dataset['brand']

#Scaling the data (Step 1)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(df_num)
scaled_data = scaler.transform(df_num)

#Applying PCA to the scaled data
from sklearn.decomposition import PCA

#Setting the variance to 0.95
pca = PCA(n_components = 0.95)
pca.fit(scaled_data)
#Applying to our scaled dataset
scaled_data_pca = pca.transform(scaled_data)
#Check the shape of the original dataset and the new dataset
print("The dimensions of the original dataset are: ", scaled_
 data.shape)
print("The dimensions of the dataset after performing PCA is:
 ", scaled_data_pca.shape)

294 Principal Component Analysis with Scikit-Learn

Here is the output:
The dimensions of the original dataset are: (300, 7)
The dimensions of the dataset after performing PCA is: (300,
 3)

As we can see from the output, three principal components are required to capture 95%
of the variance in the dataset. This means that by choosing two principal directions
previously, we were capturing < 95% of the variance in the dataset. Despite capturing <
95% of the variance, we were able to visualize the fact that the pizzas produced by different
companies have different nutritional contents.

In this section, we looked at the implementation of PCA using scikit-learn, which
performs all the steps mentioned in the previous section under the hood and provides
us with a quick result. We imported the dataset, dropped the non-numeric columns, and
scaled each column of the dataset to make sure that the mean was 0 and the variance
was 1. We then applied the PCA algorithm and selected the first two principal directions
to visualize the dataset. We also performed a similar process but this time set the PCA
algorithm to capture 95% of the variance in the dataset, for which it needed to capture
three principal components.

In the next section, we will apply PCA to the popular MNIST dataset and analyze the
number of principal components required to capture a required amount of variance in the
dataset.

An application to real-world data
In this section, we will apply PCA to the MNIST dataset. The MNIST dataset is one of the
most famous datasets in machine learning and contains handwritten digits that are used
to train image processing algorithms. We will be using version 1 of the dataset, where
each picture of every digit has 784 features. We will transform these features into a 28 x
28 matrix for visualization purposes. Each element of this matrix is a number between 0
(white) and 255 (black).

The first step is to import the data as shown in the following code. It is going to take some
time since it is a big dataset, so hang tight. The dataset contains images of 70,000 digits
(0-9), and each image has 784 features:
#Importing the dataset
from sklearn.datasets import fetch_openml
mnist_data = fetch_openml('mnist_784', version = 1)

Choosing the independent (X) and dependent variables (y)
X,y = mnist_data["data"], mnist_data["target"]

An application to real-world data 295

Now that we have the dataset imported, we will move on to visualize an image of a digit
to get familiar with the dataset. For visualization, we will use the matplotlib library.
We will visualize the 50,000th digit image. Feel free to check out other digit images of
your choice – make sure to use an index between 0 and 69,999. We will set colormap to
binary to output a grayscale image, which is implemented in the following code:

#Plotting one of the digits
import matplotlib.pyplot as plt
plt.figure(1)
#Plotting the 50000th digit
digit = X[50000]
#Reshaping the 784 features into a 28x28 matrix
digit_image = digit.reshape(28,28)

plt.imshow(digit_image, cmap='binary')
plt.show()

Here is the output:

Figure 12.9 – Visualizing a digit image from the MNIST dataset

296 Principal Component Analysis with Scikit-Learn

As you can see in the preceding figure, the image is 28 x 28 in size.

Next, we will move on to scaling the dataset by making using of StandardScaler to
standardize the features by setting the mean to 0 and variance to 1:

#Scaling the data
from sklearn.preprocessing import StandardScaler
scaled_mnist_data = StandardScaler().fit_transform(X)
print(scaled_mnist_data.shape)

Here is the output:

(70000, 784)

scaled_mnist_data is a 70,000 x 784 matrix.

Now that we have our data in the form we want it to be in, we will go ahead and apply
PCA to it. We will set the number of principal components to 784:
#Applying PCA to ur dataset
from sklearn.decomposition import PCA

pca = PCA(n_components=784)
mnist_data_pca = pca.fit_transform(scaled_mnist_data)

Now that we have the principal components figured, we will find the cumulative
variance captured by these principal components. In other words, we will know how
many principal components we need to consider to capture 90% of the variance in the
original dataset. We will use the NumPy library to calculate the variance captured by each
component and the cumulative variance. The equation for calculating the percentage
variance captured by each component is as follows:

Percentage variance explained by each PC = Variance explained by each PC
Sum of variance explained by all PCs

Cumulative variance can be calculated by adding the variance explained by each
component as we move from one component to another. We will calculate the cumulative
variance using the numpy library, as shown here:
#Calculating cumulative variance captured by PCs
import numpy as np
variance_percentage = pca.explained_variance_/np.sum(pca.
 explained_variance_)

#Calculating cumulative variance
cumulative_variance = np.cumsum(variance_percentage)

An application to real-world data 297

We will now visualize the cumulative variance to see how many principal components are
needed to explain 90% of the variance in the original dataset:

#Plotting cumalative variance
import matplotlib.pyplot as plt
plt.figure(2)
plt.plot(cumulative_variance)
plt.xlabel('Number of principal components')
plt.ylabel('Cumulative variance explained by PCs')
plt.grid()
plt.show()

Here is the output:

Figure 12.10 – Cumulative variance explained by principal components

298 Principal Component Analysis with Scikit-Learn

From the preceding plot, we can see that a little less than 300 principal components
(dimensions) are required to explain 90% of the variance in the original datasets.

After reducing the dimensions of the dataset, you can then move ahead with other
machine learning algorithms (such as regression, clustering, and others) and apply them
to your dataset. You should see a considerable decrease in the model training time with
principal components.

In this section, we learned about applying PCA to the MNIST dataset and saw how
we can use just 300 dimensions to capture a very high variance in the dataset. This is
helpful when it comes to large datasets to reduce the disk space that is required for
storage, reduce the computation time, and have a lower chance of model fitting.

Summary
In this chapter, we learned about eigenvalues, eigenvectors, and orthogonal bases and
how these concepts connect to form a basis for dimensionality reduction. We then learned
about the two types of dimensionality reduction methods – feature elimination and
feature extraction. We discussed the different steps of performing Principal Component
Analysis which falls into the feature extraction category for dimensionality reduction.
We used the implementation of PCA from scikit-learn to apply the algorithm to our
dataset, where we reduced the features in our pizza dataset from 7 to 2 and visualized
the data. We were able to easily tell that the nutrients present in the pizzas manufactured
by different companies were different. Lastly, we applied PCA to the MNIST dataset
and figured out that only 300 principal components were needed to capture 90% of the
variance in the dataset, as compared to the 784 feature variables that we had originally,
reducing the dimensionality by more than 50%!

Congratulations! We have reached the end of our discrete mathematics with applications
in Python journey. If you have followed along with all the mathematical concepts and the
Python code snippets, you are in a very good position to carry forward this knowledge
and apply it to more complex real-world problems. A suggestion would be to start
working on new projects involving different datasets and showcasing your work on
different platforms such as GitHub and Kaggle. This will not only help you showcase your
achievements but also aid your understanding of the concepts better. Keep practicing! In
the words of Confucius, "I hear and I forget. I see and I remember. I do and I understand."

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Applying Math with Python

Sam Morley

ISBN: 978-1-83898-975-0
• Get familiar with basic packages, tools, and libraries in Python for solving

mathematical problems
• Explore various techniques that will help you to solve computational mathematical

problems
• Understand the core concepts of applied mathematics and how you can apply them

in computer science
• Discover how to choose the most suitable package, tool, or technique to solve

a certain problem
• Implement basic mathematical plotting, change plot styles, and add labels to the

plots using Matplotlib
• Get to grips with probability theory with the Bayesian inference and Markov Chain

Monte Carlo (MCMC) methods

https://www.packtpub.com/product/applying-math-with-python/9781838989750

300 Other Books You May Enjoy

Hands-On Mathematics for Deep Learning

Jay Dawani

ISBN: 978-1-83864-729-2

• Understand the key mathematical concepts for building neural network models
• Discover core multivariable calculus concepts
• Improve the performance of deep learning models using optimization techniques
• Cover optimization algorithms, from basic stochastic gradient descent (SGD) to the

advanced Adam optimizer
• Understand computational graphs and their importance in DL
• Explore the backpropagation algorithm to reduce output error
• Cover DL algorithms such as convolutional neural networks (CNNs), sequence

models, and generative adversarial networks (GANs)

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

https://www.packtpub.com/product/hands-on-mathematics-for-deep-learning/9781838647292

Index

Symbols
3-by-3 linear system

example 131-134
10-by-10 linear system

example 135, 136

A
acyclic graphs 173
adjacency data

efficient storage 186
adjacency list

about 181
example 182

adjacency matrices 193
adjacency matrix

about 182
example 182, 183
features 183
for directed graph 184
storing, in Python 185, 186

adjacent vertices 177
algorithms

about 140
computational complexity 140-144
feasibility 142

finiteness 141
input 141
output 141
unambiguous 142

algorithms, from data structure
delete 140
insert 140
search 140
sort 140
update 140

algorithms, performance
fixed part 143
space requirement 143
time requirement 143
variable part 143

analysis of algorithms 6
AND operator 52, 53
argument 21

B
base-6 number

decimal value 48
base-n numbers

about 46
converting, to decimal numbers 48

302 Index

decimal number 46
decimal numbers, example 46
defining 47

bases
converting between 47

Bayesian spam filtering 97, 98
Bayes' theorem 93-97
best-fit lines 238
biconditional 25
Big-O Notation 145
binary numbers

about 51, 52
applications 51, 52

binary search algorithm
about 161-164
average case 164
best case 163
working 164
worst case 163

binomial coefficient 72
binomial RV 99
Boolean algebra

about 52
AND operator 52, 53
NOT operator 55, 56
OR operator 54, 55

Boolean operators
example 56-58

Brute Force
used, for searching shortest

path 212-214
brute-force algorithms

efficacy 76
bytes 52, 67

C
Caesar cipher

example 76-79
cardinality 12
Cartesian coordinate plane 111
Cartesian product

about 66
cardinality, of finite sets 66, 67
for n sets 67

colors on computers
example 68

combination
about 71
of set 72

combinations of balls
example 73

combination, versus permutation
for simple set 71

Comma-Separated Value (CSV) 57
common classes of computational

complexity 164-166
commutative law 52
complexity of algorithms

with fundamental control structures 151
complexity of complex functions 148-150
conclusion 21
conditional 25
conditional probability 93, 94
conjunction 24
connected components 177, 178
connected graphs 177, 178
consistent system

about 118
in RREF 129

constant complexity O(c) 145, 146
constants 150, 151

Index 303

contradiction, using for
mathematical proofs

about 34, 35
examples 35-38

contrapositive 30, 33
control structures

about 151
repetitive flow 155
selection flow 153
sequential flow 152
using, in complexity of algorithms 151

converse 27
counting rule 66, 67
covariance matrix 289
cryptography 5
cycles 172, 173

D
damping factor 103
dataset

about 236-238
columns 236, 237, 280

decimal numbers
base-n numbers, converting to 48
converting, to base-2 (binary) 48, 49
converting, to binary in Python 50
converting, to hexadecimal in Python 50
example 46

degree, of vertex
about 171
examples 171
theorem 171

De Morgan's laws
about 10, 11, 29, 30
example 12

dependent system
about 118
in RREF 130

depth-first search (DFS)
about 197, 199-201
Python implementation of 201-204

digraph 175
Dijkstra's algorithm

about 215
applying, to small problem 216-221
pattern 215
used, for searching shortest

path 214, 215
dimensionality reduction

principal component analysis
(PCA), approach 286-290

directed acyclic graphs (DAGs) 179
directed edges 175
directed graph

about 175
adjacency matrix 184

directed networks
about 176
example 176

discrete mathematics 4, 5
discrete mathematics, real-

world applications
about 5
analysis of algorithms 6
cryptography 5
logistics 5
machine learning 5
relational databases 6

discrete probability
basics 84
elementary properties of probability 87
events 85
Laplacian probability 90

304 Index

monotonicity theorem 88
outcomes 85
Principle of Inclusion-Exclusion 89
probability measure 86
random experiment 84
sample spaces 85

disjoint set 10
disjunction 25
domains 13
dot product

of vectors 124

E
edges 169
eigenvalues bases 280-286
eigenvectors bases 280-286
Electronic Numerical Integrator

and Computer (ENIAC) 51
elementary algebra 14
elementary properties of probability

about 87
example 87, 88

empty set 7
Euclidean norm 268
events 85
expectation

about 100
empirical random variable 101

F
factorials 69, 70
features 239
for loop 155-158
formal logic

by truth tables 20
cores ideas 24

terminology 20, 21
functions

about 13
in elementary algebra 14
versus relations 13

G
Gaussian elimination

about 127-131
linear systems, solving 128

Google PageRank I 102-105
Google's PageRank algorithm 260-267
graphs

about 170
degrees, of vertices 190, 191
feature extraction 190
searching 198
storage 181
using 178-181

greedy algorithm 215

H
hexadecimal numbers

about 59, 60
advantages 64
applications 59, 60
colors, defining on web 63, 64
error messages, displaying 62
locations, defining in computer

memory 60, 61
MAC addresses 62

I
if-elif-else conditionals 154
implication 25

Index 305

inconsistent and dependent
systems, NumPy

example 134, 135
inconsistent system

about 118
in RREF 129

intractable problem 165
invalid 21

K
k-permutations

of set 70, 71

L
Laplacian probability

about 90
calculating 90
independent events 91
tossing many coins, example 91, 93
tossing multiple coins, example 91

Law of Total Probability 96
leading coefficient (pivot) 128
least-squares curves

using, with NumPy 249-251
using, with SciPy 249-251

least-squares lines
using, with NumPy 245-249

least-squares method 238, 243-245
least-squares surfaces

using, with NumPy 252-254
using, with SciPy 252-254

Linear complexity O(n) 146, 147
linear equations

example 112
in two variables 110

linear relationship 238

linear search algorithm,
about 160, 161
average case 161
best case 161
working 161
worst case 161

linear system of two equations,
in two variables

about 113
consistent system 113
dependent system 116, 117
inconsistent system 114

linear systems
matrix representations 119
solving, with Gaussian elimination 128
solving, with NumPy 133

linear systems of equations 110
line of best fit 240-243
logical connectives 24
logistics 5

M
machine learning 5
mathematical functions

versus Python functions 15, 16
mathematical induction

proofs 38
proofs, example 39-44

mathematical proofs
about 31
examples 31-33

matrices
about 119, 120
addition 121
in Python 193, 194
multiplying 125, 126

306 Index

scalar multiplication 122-124
subtraction 121

matrix multiplication 124, 125
mean 100
memory allocation

applications 74
memory pre-allocation

example 74, 75
minimum-edge paths, between vi and vj

about 194
example 194, 195

minimum spanning tree (MST) 180
MNIST dataset

principal component analysis
(PCA), applying, to 294-298

model parameters 239
monotonicity theorem 88
multiplication rules 95

N
negation 24
Network Interface Card (NIC) 62
networks

about 170, 174
shortest paths on 205
storage 181
using 178-181

nodes 170
non-connected graph

example 183
non-deterministic polynomial

time (NP) 165
Notation 145
NOT operator 55, 56
number of paths

counting, between vertices of
specified length 191, 192

NumPy
least-squares curves, using with 249-251
least-squares lines, using with 245-249
least-squares surfaces, using with 252
linear systems, solving 133

O
ordered pairs 175
OR operator 54, 55
orthogonal bases 280-286
outcomes 84, 85

P
packages installing, in Python

reference link 57
PageRank 103
PageRank algorithm

applying, to Real Data 273-277
implementing, in Python 268-273

paths 172
permutation

about 68
of set 69
of simple set 68
playlists example 69

polynomial regression 249
polynomial time (P) 164
premises 21
principal component analysis (PCA)

about 279
applying, to MNIST dataset 294-298
approach, to dimensionality

reduction 286-290
scikit-learn implementation 290-294

Principle of Inclusion-Exclusion 89
probability measure 86

Index 307

proofs
by truth tables 20

propositions 24
Python

adjacency matrix, storing in 185, 186
matrices powers 193, 194
PageRank algorithm,

implementing in 268-273
used, for converting decimal

numbers to binary 50
used, for converting decimal

numbers to hexadecimal 50
weight matrix, storing in 188, 189

Python functions
about 160
versus mathematical functions 15, 16

Python implementation
of depth-first search (DFS) 201-204

Python Implementation, of
Dijkstra's algorithm

about 221-225
example 225-230

Python programming language
logical conditions 153

Q
Quadratic complexity O(n2) 147, 148

R
random experiment

about 84
tossing coins example 85
tossing multiple coins example 85, 86

random variables (RV)
about 98, 99

data transfer errors example 99
empirical random variable 100

ranges 13
Real Data

PageRank algorithm,
applying to 273-277

red, green, and blue (RGB) 68
reduced row echelon form (RREF)

about 128
consistent system 129
dependent system 130
inconsistent system 129

regression 238-240
relational databases 6
relations

about 13
versus functions 13

repetitive flow 155
residuals 244

S
sample spaces 85
scikit-learn implementation

of principal component analysis
(PCA) 290-294

SciPy
least-squares curves, using with 249-251
least-squares surfaces, using

with 252-254
SciPy library

reference link 73
search algorithm, complexity

about 159
binary search algorithm 161-164
linear search algorithm 160, 161

Search Engines
developing, over time 258, 259

308 Index

selection flow 153
sequential flow 152
set

about 6
basic operations 8, 10
cardinality 12
disjoint set 10
elements 6
empty set 7
even and odd numbers, example 10
examples 7

set-builder notation
about 7
using 8

set theory 6
Shortest-Distance Paths 206, 207
shortest path

on networks 205
problems 205
problems, variations 205
searching, with Brute Force 212-214
searching, with Dijkstra's

algorithm 214, 215
shortest path problem

checking, whether solutions
exist 208-211

statement 207, 208
standard deviation 101
subset 7
sum of squared errors (SSE) 243-245
superset 7
symmetric matrix 183
systems of linear equations

about 118
solutions 118

T
teambuilding

example 72, 73
temperatures and precipitation

example 94, 95
terminology, for formal logic

examples 22-26
timeit library

reference link 144
tractable problem 164
transitivity law 28
traveling salesman problem

example 79, 81
tree data structures

searching 198
trees

about 170, 173
using 178-181

trendline 240
truth tables

about 26
formal logic by 20
proofs by 20

truth tables, example
contrapositive 30, 31
De Morgan's laws 29, 30
transitivity law, of conditional logic 28

truth tables, examples
converse 27

types, repetitive flow
for loop 155-158
while loop 159

Index 309

V
valid 21
variable 238
variance

about 101
empirical random variable example 102
practical calculation 102

vectors 119
dot product 124

vertices 169

W
weight matrix

storing, in Python 188, 189
weight matrix, of directed network

about 188
examples 188

weight matrix, of network
about 187
examples 187

while loop 158, 159

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Part I – Basic Concepts of Discrete Math
	Chapter 1: Key Concepts, Notation, Set Theory, Relations, and Functions
	What is discrete mathematics?
	Elementary set theory
	Definition–Sets and set notation
	Definition: Elements of sets
	Definition: The empty set
	Example: Some examples of sets
	Definition: Subsets and supersets
	Definition: Set-builder notation
	Example: Using set-builder notation
	Definition: Basic set operations
	Definition: Disjoint sets
	Example: Even and odd numbers
	Theorem: De Morgan's laws
	Example: De Morgan's Law
	Definition: Cardinality
	Example: Cardinality

	Functions and relations
	Definition: Relations, domains, and ranges
	Definition: Functions
	Examples: Relations versus functions
	Example: Functions in elementary algebra
	Example: Python functions versus mathematical functions

	Summary

	Chapter 2: Formal Logic
and Constructing Mathematical Proofs
	Formal Logic and Proofs by Truth Tables
	Basic Terminology for Formal Logic
	Example – an invalid argument
	Example – all penguins live in South Africa!
	Cores Ideas in Formal Logic
	Truth Tables
	Example – The Converse
	Example – Transitivity Law of Conditional Logic
	Example – De Morgan's Laws
	Example – The Contrapositive

	Direct Mathematical Proofs
	Example – Products of Even and Odd Integers
	Example – roots of even numbers
	Shortcut – The Contrapositive

	Proof by Contradiction
	Example – is there a smallest positive rational number?
	Example – Prove ￼ is an Irrational Number
	Example – How Many Prime Numbers Are There?

	Proof by mathematical induction
	Example – Adding 1 + 2 + … + n
	Example – Space-Filling Shapes
	Example – exponential versus factorial growth

	Summary

	Chapter 3: Computing with Base-n Numbers
	Understanding base-n numbers
	Example – Decimal numbers
	Definition – Base-n numbers

	Converting between bases
	Converting base-n numbers to decimal numbers
	Example – Decimal value of a base-6 number
	Base-n to decimal conversion
	Example – Decimal to base-2 (binary) conversion
	Example – Decimal to binary and hexadecimal conversions in Python

	Binary numbers and their applications
	Boolean algebra
	Example – Netflix users

	Hexadecimal numbers and their application
	Example – Defining locations in computer memory
	Example – Displaying error messages
	Example – Media Access Control (MAC) addresses
	Example – Defining colors on the web

	Summary

	Chapter 4: Combinatorics
Using SciPy
	The fundamental counting rule
	Definition – the Cartesian product
	Theorem – the cardinality of Cartesian products of finite sets
	Definition – the Cartesian product (for n sets)
	Theorem – the fundamental counting rule
	Example – bytes
	Example – colors on computers

	Counting permutations and combinations
of objects
	Definition – permutation
	Example – permutations of a simple set
	Theorem – permutations of a set
	Example – playlists
	Growth of factorials
	Theorem – k-permutations of a set
	Definition – combination
	Example – combinations versus permutation for
a simple set
	Theorem – combinations of a set
	Binomial coefficients
	Example – teambuilding
	Example – combinations of balls

	Applications to memory allocation
	Example – pre-allocating memory

	Efficacy of brute-force algorithms
	Example – Caesar cipher
	Example – the traveling salesman problem

	Summary

	Chapter 5: Elements of Discrete Probability
	The basics of discrete probability
	Definition – random experiment
	Definitions – outcomes, events, and sample spaces
	Example – tossing coins
	Example – tossing multiple coins
	Definition – probability measure
	Theorem – elementary properties of probability
	Example – sports
	Theorem – Monotonicity
	Theorem – Principle of Inclusion-Exclusion
	Definition – Laplacian probability
	Theorem – calculating Laplacian probabilities
	Example – tossing multiple coins
	Definition – independent events
	Example – tossing many coins

	Conditional probability and Bayes' theorem
	Definition – conditional probability
	Example – temperatures and precipitation
	Theorem – multiplication rules
	Theorem – the Law of Total Probability
	Theorem – Bayes' theorem

	Bayesian spam filtering
	Random variables, means, and variance
	Definition – random variable
	Example – data transfer errors
	Example – empirical random variable
	Definition – expectation
	Example – empirical random variable
	Definition – variance and standard deviation
	Theorem – practical calculation of variance
	Example – empirical random variable

	Google PageRank I
	Summary

	Part II – Implementing Discrete Mathematics in Data and Computer Science
	Chapter 6: Computational Algorithms in
Linear Algebra
	Understanding linear systems of equations
	Definition – Linear equations in two variables
	Definition – The Cartesian coordinate plane
	Example – A linear equation
	Definition – System of two linear equations in two variables
	Definition – Systems of linear equations and their solutions
	Definition – Consistent, inconsistent, and dependent systems

	Matrices and matrix representations of linear systems
	Definition – Matrices and vectors
	Definition – Matrix addition and subtraction
	Definition – Scalar multiplication
	Definition – Transpose of a matrix
	Definition – Dot product of vectors
	Definition – Matrix multiplication
	Example – Multiplying matrices by hand
and with NumPy

	Solving small linear systems with Gaussian elimination
	Definition – Leading coefficient (pivot)
	Definition – Reduced row echelon form
	Algorithm – Gaussian elimination
	Example – 3-by-3 linear system

	Solving large linear systems with NumPy
	Example – A 3-by-3 linear system (with NumPy)
	Example – Inconsistent and dependent systems with NumPy
	Example – A 10-by-10 linear system (with NumPy)

	Summary

	Chapter 7: Computational Requirements for Algorithms
	Computational complexity of algorithms
	Understanding Big-O Notation
	Complexity of algorithms with fundamental control structures
	Sequential flow
	Selection flow
	Repetitive flow

	Complexity of common search algorithms
	Linear search algorithm
	Binary search algorithm

	Common classes of computational complexity
	Summary
	References

	Chapter 8: Storage and Feature Extraction of Graphs, Trees, and Networks
	Understanding graphs, trees, and networks
	Definition: graph
	Definition: degree of a vertex
	Definition: paths
	Definition: cycles
	Definition: trees or acyclic graphs
	Definition: networks
	Definition: directed graphs
	Definition: directed networks
	Definition: adjacent vertices
	Definition: connected graphs and connected components

	Using graphs, trees, and networks
	Storage of graphs and networks
	Definition: adjacency list
	Definition: adjacency matrix
	Definition: adjacency matrix for a directed graph
	Efficient storage of adjacency data
	Definition: weight matrix of a network
	Definition: weight matrix of a directed network

	Feature extraction of graphs
	Degrees of vertices in a graph
	The number of paths between vertices of a specified length
	Theorem: powers of adjacency matrices	
	Matrix powers in Python
	Theorem: minimum-edge paths between vi and vj

	Summary

	Chapter 9: Searching
Data Structures
and Finding
Shortest Paths
	Searching Graph and Tree data structures
	Depth-first search (DFS)
	A Python implementation of DFS

	The shortest path problem and variations of the problem
	Shortest paths on networks
	Beyond Shortest-Distance Paths
	Shortest Path Problem Statement
	Checking whether Solutions Exist

	Finding Shortest Paths with Brute Force
	Dijkstra's Algorithm for Finding Shortest Paths
	Dijkstra's algorithm
	Applying Dijkstra's Algorithm to a Small Problem

	Python Implementation of Dijkstra's Algorithm
	Example – shortest paths
	Example – A network that is not connected

	Summary

	Part III – Real-World Applications of Discrete Mathematics
	Chapter 10: Regression Analysis with NumPy and Scikit-Learn
	Dataset
	Best-fit lines and the least-squares method
	Variable
	Linear relationship
	Regression
	The line of best fit
	The least-squares method and the sum of squared errors

	Least-squares lines with NumPy
	Least-squares curves with NumPy and SciPy
	Least-squares surfaces with NumPy and SciPy
	Summary

	Chapter 11: Web Searches with PageRank
	The Development of Search Engines over time
	Google PageRank II
	Implementing the PageRank algorithm
in Python
	Applying the Algorithm to Real Data
	Summary

	Chapter 12: Principal Component Analysis with Scikit-Learn
	Understanding eigenvalues, eigenvectors,
and orthogonal bases
	The principal component analysis approach to dimensionality reduction
	The scikit-learn implementation of PCA
	An application to real-world data
	Summary

	Other Books You May Enjoy
	Index

