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Preface
Practical Discrete Mathematics is a comprehensive introduction for those who are new  
to the mathematics of countable objects. This book will help you get up to speed with 
using discrete math principles to take your computer science skills to another level. 
You'll learn the language of discrete mathematics and methods crucial to studying 
and describing objects and algorithms from computer science and machine learning. 
Complete with real-world examples, this book covers the internal workings of memory 
and CPUs, analyzes data for useful patterns, and shows you how to solve problems in 
network routing, web searching, and data science.

Who this book is for
This book is for computer scientists looking to expand their knowledge of the core of their 
field. University students seeking to gain expertise in computer science, mathematics, 
statistics, engineering, and related disciplines will also find this book useful. Knowledge  
of elementary real-number algebra and basic programming skills in any language are the 
only requirements.

What this book covers
Part I – Basic Concepts of Discrete Math
Chapter 1, Key Concepts, Notation, Set Theory, Relations, and Functions, is an introduction 
to the basic vocabulary, concepts, and notation of discrete mathematics.

Chapter 2, Formal Logic and Constructing Mathematical Proofs, covers formal logic and 
binary and explains how to prove mathematical results.

Chapter 3, Computing with Base-n Numbers, discusses arithmetic in different numbering 
systems, including hexadecimal and binary.

Chapter 4, Combinatorics Using SciPy, explains how to count the elements in certain types 
of discrete structures.
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Chapter 5, Elements of Discrete Probability, covers measuring chance and the basics of 
Google's PageRank algorithm.

Part II – Implementing Discrete Mathematics in  
Data and Computer Science
Chapter 6, Computational Algorithms in Linear Algebra, explains how to solve algebra 
problems with Python using NumPy.

Chapter 7, Computational Requirements for Algorithms, gives you the tools to determine 
how long algorithms take to run and how much space they require.

Chapter 8, Storage and Feature Extraction of Graphs, Trees, and Networks, covers storing 
graph structures and finding information about them with code.

Chapter 9, Searching Data Structures and Finding Shortest Paths, explains how to traverse 
graphs and figure out efficient paths between vertices.

Part III – Real-World Applications of Discrete 
Mathematics
Chapter 10, Regression Analysis with NumPy, is a discussion on the prediction of variables 
in datasets containing multiple variables.

Chapter 11, Web Searches with PageRank, shows you how to rank the results of web 
searches to find the most relevant web pages.

Chapter 12, Principal Component Analysis with Scikit-Learn, explains how to reduce the 
dimensionality of high-dimensional datasets to save space and speed up machine learning.

To get the most out of this book
Knowledge of elementary real-number algebra and Python SPACE basic programming 
skills are the main requirements for this book.

You will need to install Python—the latest version, if possible—to run the code in the 
book. You will also need to install the Python libraries listed in the following table to run 
some of the code in the book. All code examples have been tested in JupyterLab using  
a Python 3.8 environment on the Windows 10 OS, but they should work with any version 
of Python 3 in any OS compatible with it and with any modern integrated development 
environment, or simply a command line.
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More information about installing Python and its libraries can be found in the  
following links: 

• Python: https://www.python.org/downloads/ 

• matplotlib: https://matplotlib.org/3.3.3/users/installing.html

• NumPy: https://numpy.org/install/ 

• pandas: https://pandas.pydata.org/pandas-docs/stable/
getting_started/install.html 

• scikit-learn: https://scikit-learn.org/stable/install.html

• SciPy: https://www.scipy.org/install.html

• seaborn: https://seaborn.pydata.org/installing.html 

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Practical-Discrete-Mathematics. In case 
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838983147_ColorImages.pdf.

https://www.python.org/downloads/
https://matplotlib.org/3.3.3/users/installing.html
https://numpy.org/install/
https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html
https://scikit-learn.org/stable/install.html
https://www.scipy.org/install.html
https://seaborn.pydata.org/installing.html
https://github.com/PacktPublishing/Practical-Discrete-Mathematics
https://github.com/PacktPublishing/Practical-Discrete-Mathematics
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838983147_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838983147_ColorImages.pdf
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Conventions used
There are a number of text conventions used throughout this book.

Keywords: indicates keywords and vocabulary.

Code in text: Indicates names of scripts, functions, packages, folder names, filenames, 
file extensions, and pathnames.

A block of code is typeset as follows:
import numpy# initialize a matrix
A = numpy.array([[3, 2, 1], [9, 0, 1], [3, 4, 1]])
print(A)

The output from code is typeset as follows:
[[3 2 1]
 [9 0 1]
 [3 4 1]]

Lastly, we have important notes, which appear as follows.

Important Note 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
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Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about 
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com




Part I – Basic 
Concepts of Discrete 

Math

Here you will learn the critical vocabulary, notations, and methods of discrete 
mathematics, including set theory, functions and relations, logic and proofs, arithmetic, 
counting, and basic probability as applied to computer science. 

This part comprises the following chapters:

• Chapter 1, Key Concepts, Notation, Set Theory, Relations, and Functions

• Chapter 2, Formal Logic and Constructing Mathematical Proofs

• Chapter 3, Computing with Base-n Numbers

• Chapter 4, Combinatorics Using SciPy

• Chapter 5, Elements of Discrete Probability





1
Key Concepts, 
Notation, Set 

Theory, Relations, 
and Functions

This chapter is a general introduction to the main ideas of discrete mathematics. 
Alongside this, we will go through key terms and concepts in the field. After that,  
we will cover set theory, the essential notation and notions for referring to collections of 
mathematical objects and combining or selecting them. We will also think about mapping 
mathematical objects to one another with functions and relations and visualizing them 
with graphs.

In this chapter, we will cover the following topics:

• What is discrete mathematics?

• Elementary set theory

• Functions and relations
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By the end of the chapter, you should be able to speak in the language of discrete 
mathematics and understand notation common to the entire field.

Important Note
Please navigate to the graphic bundle link to refer to the color images for  
this chapter.

What is discrete mathematics?
Discrete mathematics is the study of countable, distinct, or separate mathematical 
structures. A good example is a pixel. From phones to computer monitors to televisions, 
modern screens are made up of millions of tiny dots called pixels lined up in grids. Each 
pixel lights up with a specified color on command from a device, but only a finite number 
of colors can be displayed in each pixel.

The millions of colored dots taken together form intricate patterns and give our eyes the 
impression of shapes with smooth curves, as in the boundary of the following circle:

Figure 1.1 – The boundary of a circle

But if you zoom in and look closely enough, the true "curves" are revealed to be jagged 
boundaries between differently colored regions of pixels, possibly with some intermediate 
colors, as shown in the following diagram:

Figure 1.2 – A zoomed-in view of the circle
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Some other examples of objects studied in discrete mathematics are logical statements, 
integers, bits and bytes, graphs, trees, and networks. Like pixels, these too can form 
intricate patterns that we will try to discover and exploit for various purposes related  
to computer and data science throughout the course of the book.

In contrast, many areas of mathematics that may be more familiar, such as elementary 
algebra or calculus, focus on continuums. These are mathematical objects that take values 
over continuous ranges, such as the set of numbers x between 0 and 1, or mathematical 
functions plotted as smooth curves. These objects come with their own class of 
mathematical methods, but are mostly distinct from the methods for discrete  
problems on which we will focus.

In recent decades, discrete mathematics has been a topic of extensive research due to 
the advent of computers with high computational capabilities that operate in "discrete" 
steps and store data in "discrete" bits. This makes it important for us to understand the 
principles of discrete mathematics as they are useful in understanding the underlying 
ideas of software development, computer algorithms, programming languages, and 
cryptography. These computer implementations play a crucial role in applying principles 
of discrete mathematics to real-world problems.

Some real-world applications of discrete mathematics are as follows:

• Cryptography: The art and science of converting data or information into an 
encoded form that can ideally only be decoded by an authorized entity. This 
field makes heavy use of number theory, the study of the counting numbers, and 
algorithms on base-n number systems. We will learn more about these topics in 
Chapter 2, Formal Logic and Constructing Mathematical Proofs. 

• Logistics: This field makes use of graph theory to simplify complex logistical 
problems by converting them to graphs. These graphs can further be used to find 
the best routes for shipping goods and services, and so on. For example, airlines use 
graph theory to map their global airplane routing and scheduling. We investigate 
some of these issues in the chapters of Part II, Implementing Discrete Mathematics in 
Data and Computer Science.

• Machine Learning: This is the area that seeks to automate statistical and analytical 
methods so systems can find useful patterns in data, learn, and make decisions with 
minimal human intervention. This is frequently applied to predictive modeling and 
web searches, as we will see in Chapter 5, Elements of Discrete Probability, and most 
of the chapters in Part III, Real-World Applications of Discrete Mathematics.
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• Analysis of Algorithms: Any set of instructions to accomplish a task is an 
algorithm. An effective algorithm must solve the problem, terminate in a useful 
amount of time, and not take up too much memory. To ensure the second 
condition, it is often necessary to count the number of operations an algorithm 
must complete in order to terminate, which can be complex, but can be done 
through methods of combinatorics. The third condition requires a similar 
counting of memory usage. We will encounter some of these ideas in Chapter 4, 
Combinatorics Using SciPy, Chapter 6, Computational Algorithms in Linear Algebra, 
and Chapter 7, Computational Requirements for Algorithms. 

• Relational Databases: They help to connect the different traits between data  
fields. For example, in a database containing information about accidents in  
a city, the "relational feature" allows the user to link the location of the accident  
to the road condition, lighting condition, and other necessary information.  
A relational database makes use of the concept of set theory in order to group 
together relevant information. We see some of these ideas in Chapter 8, Storage  
and Feature Extraction of Trees, Graphs, and Networks.

Now that we have a rough idea of what discrete mathematics is and some of its 
applications, we will discuss set theory, which forms the basis for this field in the  
next section. 

Elementary set theory
"A set is a Many that allows itself to be thought of as a One."

– Georg Cantor
In mathematics, set theory is the study of collections of objects, which is prerequisite 
knowledge for studying discrete mathematics.

Definition–Sets and set notation
A set is a collection of objects. If a set A is made up of objects a1, a2, …, we write it as  
A = {a1, a2, …}.

Definition: Elements of sets 
Each object in a set A is called an element of A, and we write an ∈  A.
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Definition: The empty set 
The empty set is denoted .

Sets may contain many sorts of objects—numbers, points, vectors, functions, or even 
other sets.

Example: Some examples of sets 
Examples of sets include the following:

• The set of prime numbers less than 10 is A = {2, 3, 5, 7}.

• The set of the three largest cities in the world is {Tokyo, Delhi, Shanghai}.

• The natural numbers are a set N = {1, 2, 3, …}.

• The integers are a set Z = {…, -3, -2, -1, 0, 1, 2, 3, …}.

• If B, C, and D are sets, A = {B, C, D} is a set of sets.

• The real numbers are written R = (-∞, ∞), which consists of the entire number line. 
Note that it is not possible to list the real numbers within braces, as we can with  
N or Z.

Definition: Subsets and supersets
A set A is a subset of B if all elements in A are also in B, and we write it as A  B. We call B 
a superset of A. If A is a subset of B, but they are not the same set, we call A a proper 
subset of B, and write A  B.

It is helpful to have an alternative notation in order to construct sets satisfying certain 
criteria, which we call set-builder notation, defined next.

Definition: Set-builder notation
A set may be written as {x ∈  A | Conditions}, which consists of the subset of A such that 
the given conditions are true.

Sometimes, sets will be expressed as {x | Conditions} when it is obvious what kind of 
mathematical object x is from the context.
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Example: Using set-builder notation
Examples of sets constructed by set-builder notation include the following.

• The set of even natural numbers is {2, 4, 6, ...} = {n | n = 2k for some k ∈  N}. This is 
an infinite set where each element n is 2 * k, where k is some natural number 
belonging to the set {1, 2, 3…..}. 

• The closed interval of real numbers from a to b is {x ∈  R | a ≤ x ≤ b} = [a, b].

• The open interval of real numbers from a to b is {x ∈  R | a < x < b} = (a, b).

• The set R2 = {(x, y) | x, y ∈  R} consists of the entire 2D coordinate plane.

• The line with slope 2 and y-intercept 3 is the set {(x, y) ∈  R2 | y = 2x + 3}.

• The open ball of radius r and center (0, 0) is {(x, y) ∈  R2 | x2 + y2 < r}, which is the 
interior, but not the boundary of a circle.

• A circle of radius r and center (0, 0) is {(x, y) ∈  R2 | x2 + y2 = r}, which is the 
boundary of the circle.

• The set of all African nations is {x ∈  Nations | x is in Africa}.

There are some useful operations that may be done to pairs of sets, which we will see in 
the next definition.

Definition: Basic set operations
Let A and B be sets. Let's take a look at the basic operations:

• The union of sets A and B is the set of all elements in A or B (or both) and is 
denoted A  B = {x | x ∈  A or x ∈  B}.

• A union of sets A1, A2, … is denoted ⋃𝐴𝐴𝑛𝑛
∞

𝑛𝑛=1
 .

• The intersection of sets A and B is the set of all elements in both A and B. It is 
denoted A  B = {x | x ∈  A and x ∈  B}.

• An intersection of sets A1, A2, … is denoted ⋂𝐴𝐴𝑛𝑛
∞

𝑛𝑛=1
 .

• The complement of set A is all elements in the set that are not in A and is denoted 
AC = {x | x  A}.

• The difference between sets A and B is the set of all elements in A, but not B, 
denoted A - B = {x ∈  A | x  B}.
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It is often useful to represent these set operations with Venn diagrams, which are visual 
displays of sets. Here are some examples of the operations shown previously:

• The following displays A  B:

Figure 1.3 – A  B

• The following displays A  B:

Figure 1.4 – A  B 

• The following displays Ac:

Figure 1.5 – Ac 

• The following displays A – B:

Figure 1.6 – A - B
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As an example, consider the following diagram. We can use the language of set theory to 
describe many aspects of the diagram:

• Elements a, b, and d are in set A, which we can write as a, b, d ∈  A.

• Elements c and d are in set B, and c, d ∈  B.

• Element c is not in A, so we could write c  A or c ∈  AC.

• Element d is in both A and B, or d ∈  A  B.

• All four elements are in A or B (or both), so we could say a, b, c, d ∈  A  B:

Figure 1.7 – Two sets with some elements

Definition: Disjoint sets
Sets A and B are disjoint (or mutually exclusive) if A  B = . In other words, the sets 
share no elements in common.

Example: Even and odd numbers
Consider sets of even natural numbers E = {2, 4, 6, ...} and odd natural numbers O = {1, 3, 
5, ...}. These sets are disjoint, E  O = , since no number is both odd and even.

• E is a subset of the natural numbers, E  N.

• O is a subset of the natural numbers, O  N.

The union of E and O make up the set of all-natural numbers, E  O = N.

Theorem: De Morgan's laws
De Morgan's laws state how mathematical concepts are related through their opposites.  
In set theory, these laws make use of complements to address the intersection and union 
of sets. 
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De Morgan's laws can be written as follows:

1. (A  B)C = AC  BC 

2. (A  B)C = AC  BC 

The following diagrams display De Morgan's laws:

Figure 1.8 – De Morgan's laws (A  B)C = AC  BC

Figure 1.9 – De Morgan's laws (A  B)C = AC  BC

Proof:

Let's now look at the proof of this theorem:

Let x ∈  (A  B)C, then x  (A  B), which means x  A and x  B, or x ∈  AC and x ∈  BC, 
or x ∈  AC  BC. Thus, (A  B)C is a subset of AC  BC.

Next,  let x ∈  (AC  BC),  then x ∈  AC and x ∈  BC, or x  A and  x  B,  then x  (A  B) 

or x ∈  (A  B)C. Like the last step, we see AC  BC is a subset of (A  B)C. Since (A  B)C is 

a subset of AC  BC and vice versa, (A  B)C = AC  BC.
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The proof of this result is similar and is left as an exercise for the reader.

Notice that the preceding method of proof is designed to show that any element of  
(A  B)C is an element of AC  BC, and to show that any element of AC  BC is an element 
of (A  B)C, which establishes that the two sets are the same.

Example: De Morgan's Law
Consider two sets of natural numbers, the even numbers E = {2, 4, 6, …} and  
A = {1, 2, 3, 4}. If we take the set of elements in either set, or the complement of the union 
of the sets, we have (E  A)C = {1, 2, 3, 4, 6, 8, 10, …}C = {5, 7, 9, …}.

De Morgan's law states that the intersection of the complements of the sets should be 
equal to this. Let's verify that this is true. The complements of the sets are EC = {1, 3, 5, …} 
and AC = {5, 6, 7, …}. The intersection of these complements is EC  AC = {5, 7, 9, …}.

Definition: Cardinality
The cardinality, or size, of a set A is the number of elements in the set and is denoted |A|.

Example: Cardinality
The cardinalities of some sets are computed here:

• If A = {0, 1}, then of course its cardinality is |A| = 2, since there are two elements in 
the set.

• The cardinality of the set B = {x ∈  N | x < 10} is less obvious, but we can write B 
more explicitly. It is the set of natural numbers less than 10, so B = {1, 2, 3, 4, 5, 6, 7, 
8, 9} and, clearly, |B| = 9.

• For the set of odd natural numbers, O = {1, 3, 5, ...}, we have an infinite cardinality, 
|O| = ∞, as this sequence goes on forever.

With our knowledge of set theory, we can now move on to learn about relations between 
different sets and functions, which help us to map each element from a set to exactly one 
element in another set.

Functions and relations
"Gentlemen, mathematics is a language."

– Josiah Willard Gibbs



Functions and relations     13

We are related to different people in different ways; for example, the relationship between 
a father and his son, the relationship between a teacher and their students, and the 
relationship between co-workers, to name just a few. Similarly, relationships exist  
between different elements in mathematics.

Definition: Relations, domains, and ranges
• A relation r between sets X and Y is a set of ordered pairs (x, y) where x ∈  X and  

y ∈  Y.

• The set {x ∈  X | (x, y) ∈  r for some y ∈  Y} is the domain of r.

• The set {y ∈  Y | (x, y) ∈  r for some x ∈  X} is the range of r.

More informally, a relation pairs element of X with one or more elements of Y.

Definition: Functions
• A function f from X to Y, denoted f : X→Y, is a relation that maps each element  

of X to exactly one element of Y.

• X is the domain of f.

• Elements of the function (x, y) are sometimes written (x, f(x)).

As the definitions reveal, functions are relations, but must satisfy a number of additional 
assumptions, in other words, every element of X is mapped to exactly 1 element of Y.

Examples: Relations versus functions
Let's look at X = {1, 2, 3, 4, 5} and Y = {2, 4, 6, …}. Consider two relations between X  
and Y:

• r = {(3, 2), (3, 6), (5, 6)}

• s = {(1, 4), (2, 4), (3, 8), (4, 6), (5, 2)}

The domain of r is {3,5} and the range of r is {2, 6} while the domain of s is all of X and the 
range of s is {2, 4, 6, 8}.

Relation r is not a function because it maps 3 to both 2 and 6. However, s is a function 
with domain X since it maps each element of X to exactly one element of Y.
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Example: Functions in elementary algebra
Elementary algebra courses tend to focus on specific sorts of functions where the domain 
and range are intervals of the real number line. Domain values are usually denoted by x 
and values in the range are denoted by y because the set of ordered pairs (x, y) that satisfy 
the equation y = f(x) plotted on the Cartesian xy-plane form the graph of the function, as 
can be seen in the following diagram:

Figure 1.10 – Cartesian xy-plane

While this typical type of functions may be familiar to most readers, the concept of a 
function is more general than this. First, the input or the output is required to be  
a number. The domain of a function could consist of any set, so the members of the set 
may be points in space, graphs, matrices, arrays or strings, or any other types of elements.

In Python and most other programming languages, there are blocks of code known as 
"functions," which programmers give names and will run when you call them. These 
Python functions may or may not take inputs (referred to as "parameters") and return 
outputs, and each set of input parameters may or may not always return the same output. 
As such, it is important to note Python functions are not necessarily functions in the 
mathematical sense, although some of them are.

This is an example of conflicting vocabulary in the fields of mathematics and computer 
science. The next example will discuss some Python functions that are, and some that are 
not, functions in the mathematical sense.
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Example: Python functions versus mathematical 
functions 
Consider the sort() Python function, which is used for sorting lists. See this function 
applied to two lists – one list of numbers and one list of names:

numbers = [3, 1, 4, 12, 8, 5, 2, 9]
names = ['Wyatt', 'Brandon', 'Kumar', 'Eugene', 'Elise']

# Apply the sort() function to the lists
numbers.sort()
names.sort()

# Display the output
print(numbers)
print(names)

The output is as follows:

[1, 2, 3, 4, 5, 8, 9, 12]
['Brandon', 'Elise', 'Eugene', 'Kumar', 'Wyatt']

In each case, the sort() function sorts the list in ascending order by default (with 
respect to numerical order or alphabetical order).

Furthermore, we can say that sort() applies to any lists and is a function in the 
mathematical sense. Indeed, it meets all the criteria:

1. The domain is all lists that can be sorted.

2. The range is the set of all such lists that have been sorted.

3. sort() always maps each list that can be inputted to a unique sorted list  
in the range.

Consider now the Python function random, shuffle(), which takes a list as an input 
and puts it into a random order. (Just like the shuffle option on your favorite music app!) 
Refer to the following code:

import random

# Set a random seed so the code is reproducible
random.seed(1)
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# Run the random.shuffle() function 5 times and display the 
   # outputs
for i in range(0,5):
  numbers = [3, 1, 4, 12, 8, 5, 2, 9]
  random.shuffle(numbers)
  print(numbers)

The output is as follows:

[8, 4, 9, 2, 1, 3, 5, 12]
[5, 1, 3, 8, 2, 12, 9, 4]
[2, 1, 12, 9, 5, 4, 8, 3]
[1, 2, 3, 12, 5, 8, 4, 9]
[5, 8, 9, 12, 4, 3, 2, 1]

This code runs a loop where each iteration sets the list numbers to [3, 1, 4, 12, 8, 5, 
2, 9], applies the shuffle function to it, and prints the output.

In each iteration, the Python function shuffle() takes the same input, but the output 
is different each time. Therefore, the Python function shuffle() is not a mathematical 
function. It is, however, a relation that can pair each list with any ordering of itself.

Summary
In this chapter, we have discussed the meaning of discrete mathematics and discrete 
objects. Furthermore, we provided an overview of some of the many applications of 
discrete mathematics in the real world, especially in the computer and data sciences, 
which we will discuss in depth in later chapters.

In addition, we have established some common language and notation of importance 
for discrete mathematics in the form of set notation, which will allow us to refer to 
mathematical objects with ease, count the size of sets, represent them as Venn diagrams, 
and much more. Beyond this, we learned about a number of operations that allow us to 
manipulate sets by combining them, intersecting them, and finding complements. These 
give rise to some of the foundational results in set theory in De Morgan's laws, which  
we will make use of in later chapters. 
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Lastly, we took a look at the ideas of functions and relations, which map mathematical 
objects such as numbers to one another. While certain types of functions may be familiar 
to the reader from high school or secondary school, these familiar functions are typically 
defined on continuous domains. Since we focus on discrete, rather than continuous,  
sets in discrete mathematics, we drew the distinction between the familiar idea and  
a new one we need in this field. Similarly, we showed the difference between functions 
in mathematics and functions in Python and saw that some Python "functions" are 
mathematical functions, but others are not.

In the remaining four chapters of Part I: Core Concepts of Discrete Mathematics, we will fill 
our discrete mathematics toolbox with more tools, including logic in Chapter 2, Formal 
Logic and Constructing Mathematical Proofs, numerical systems, such as binary and 
decimal, in Chapter 3, Computing with Base n Numbers, counting complex sorts of objects, 
including permutations and combinations, in Chapter 4, Combinatorics Using SciPy, and 
dealing with uncertainty and randomness in Chapter 5, Elements of Discrete Probability. 
With this array of tools, we will be able to consider more and more real-world applications 
of discrete mathematics.





2
Formal Logic  

and Constructing 
Mathematical Proofs
This chapter is an introduction to formal logic and mathematical proofs. We'll first 
introduce some primary results of formal logic and prove logical statements with the use 
of truth tables. In the remainder of the chapter, we'll consider the most common methods 
of mathematical proofs (direct proof, proof by contradiction, and proof by mathematical 
induction) to build skills that you will need for more complex problems to come later.

In this chapter, we will cover the following topics:

• Formal logic and proofs by truth tables

• Direct mathematical proofs

• Proof by contradiction

• Proof by mathematical induction
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By the end of the chapter, you will have a grasp of how formal logic provides a grounding 
for deductive thought, you will have learned how to model logical problems with 
truth tables, you will have proved claims with truth tables, and you will have learned 
how to construct mathematical proofs using several methods: direct proof, proof 
by contradiction, and proof by mathematical induction. This short introduction to 
mathematical proofs will help you to learn how to think like a mathematician, use 
powerful deductive thought, and learn the later material in the book.

Important Note
Please navigate to the graphic bundle link to refer to the color images for  
this chapter.

Formal Logic and Proofs by Truth Tables
We will be interested in arguments about mathematical structures and mathematical 
proofs throughout the book so that we can establish mathematical truths that will be used 
in practical problems. For this reason, in this section, we wish to establish some familiarity 
with the strict logic required to establish some mathematical theory that allows us to solve 
practical mathematical problems.

The foundation of all mathematics is logic, which studies how we can construct logically 
sound arguments that show that certain assumptions lead to certain conclusions with no 
doubt. In particular, formal logic abstracts away any specifics of the particular arguments 
being constructed in order to focus on the structure of the arguments, which can establish 
some general principles or shortcuts that can be used in specific arguments. Aristotle 
developed many principles of syllogistic logic, which is logic focusing on arguments that 
deductively lead from some assumptions to a conclusion. This work, dating all the way 
back to the 300s BCE, in fact, is still widely used today. The modern study of formal logic 
uses and builds upon the pioneering work of Aristotle.

Basic Terminology for Formal Logic
Before proceeding to study formal logic, we need to define some terms and notation to 
facilitate the discussion. Informally, logic studies how some statements lead to certain 
consequences. This sounds abstract, so let's consider an example.
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Suppose we want to use some simple mathematical reasoning to show that if a positive 
integer is a multiple of 4, then it is also a multiple of 2. Of course, we probably all 
intuitively know that this is true based on our experience with arithmetic, but let's 
carefully write down some reasoning for this claim, step by step, as an example:

1. n is a positive integer.

2. n is a multiple of 4.

3. There exists some positive integer, m, where n  = 4m.

4. If we factor out 2 on the right side of the equation, we find n = 2(2m).

5. Therefore, n is a multiple of 2.

Let's break this down into pieces and define them in the context of the vocabulary of 
formal logic:

• Each line of a chain of reasoning that is either true or false is called a statement:

a) All five lines in the preceding reasoning are statements.
• A collection of statements is called an argument:

a) The whole collection of statements 1–5 makes up an argument.

b)  Note that the word "argument" may be used differently in everyday conversation, 
but the arguments studied by formal logic must not include any ambiguity, only 
statements.

• Exactly one statement of an argument is called the conclusion:

a) Statement 5 is the conclusion.

b) Conclusions usually come at the end.

c)  Conclusions are usually things we would like to prove in mathematical 
arguments.

• All other statements of the argument are called premises:

a) Statements 1–4 are premises.
• An argument is called valid if the conclusion must be true when all the premises  

are true:

a)  The preceding argument is valid because statement 5 (the conclusion) must be 
true when the first four statements (or premises) are true.

• Any argument that is not valid is called invalid.



22     Formal Logic and Constructing Mathematical Proofs 

In other words, in a valid argument, the premises must unambiguously lead to the 
conclusion, as is true in our preceding simple mathematical argument.

An invalid argument is one where all the premises could be true, but the conclusion is still 
false. To make this clearer, let's consider an example.

Example – an invalid argument
Consider the following argument:

1. n is a positive integer.

2. n is a multiple of 3.

3. n is a multiple of 5.

4. 3 and 5 are both odd numbers.

5. Therefore, n is an odd number.

So, we have a positive integer, n, which is a multiple of both 3 and 5, which are odd 
numbers. Assume statements 1–4 are true premises and statement 5 is the conclusion of 
the argument. Is this a valid argument?

It makes some sense; lots of multiples of 3 are odd:

3, 9, 15, …

And lots of multiples of 5 are odd:

5, 15, 25, …

So, does it make sense to conclude that n is odd? No! There are some numbers that are 
multiples of both 3 and 5 that are not odd, as follows:

30, 60, 90, …

These are even numbers, so statements 1–4 could be true and n could still be an even 
number—that is, statement 5 is false. In other words, it is possible for all premises of the 
argument (statements 1–4) to be true but for the conclusion of the argument (statement 5) 
to be false simultaneously, so this argument is invalid.

A point that might be surprising is that a valid argument is not always a good argument 
practically speaking. Let's consider an example.
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Example – all penguins live in South Africa!
Consider the following silly argument:

1. All penguins are orange.

2. All orange animals live in countries on the equator.

3. The equator passes through only one country.

4. South Africa is on the equator.

5. All penguins live in South Africa.

Suppose statements 1 and 2 are true. Therefore, all penguins are orange and all orange 
animals live in countries on the equator, which means all penguins live in countries on 
the equator. If statements 3 and 4 are true, the only country the equator passes through 
is South Africa. Combining these two, we can conclude that the only country penguins 
could live in is South Africa. Thus, these statements imply statement 5 is true.

Here, if the premises (statements 1–4) are true, then the conclusion (statement 5) must be 
true. Thus, the argument is valid by definition.

There is clearly a problem: none of these premises are actually true! Penguins are not 
ordinarily orange, many penguins live in cold climates far from the equator, orange 
animals such as tigers live in countries that are not on the equator, the equator passes 
through many countries, and South Africa is not one of those countries:

  

Figure 2.1 – Penguins are certainly not all orange (left) and the equator (the dotted line on the map) is 
nowhere near South Africa (right)!
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As we can see, a valid argument is not always a "good" argument, practically speaking. 
It simply means that if the premises are true, then the conclusion is true. There is no 
requirement for the premises to actually be true.

This may seem unusual, but it reveals something important: logic studies the 
consequences of assumptions we choose to make. It is not necessarily concerned with 
what is true, except for the matter of whether the premises imply the conclusions in an 
argument.

Next, let's introduce some common notations for writing about arguments to facilitate 
some analysis of arguments we would like to do.

Cores Ideas in Formal Logic
We will represent statements (also frequently called propositions in this context) with 
single lowercase letters, typically p, q, and r.

In logical arguments, we frequently want to modify propositions and combine 
propositions to build compound propositions that are more complex or more interesting. 
For the upcoming ideas, let's consider two simple propositions about a positive integer, n:

• p: 5 is a multiple of 2

• q: 6 is a multiple of 3

For example, we might want to form a proposition "p and q" or, in more readable terms, "5 
is a multiple of 2 and 6 is a multiple of 3," which is still a proposition, just a more complex 
proposition. As a proposition, of course, it still may be true or false.

More formally, logical connectives are words or symbols that connect or modify 
propositions. There is some common notation used for many common connectives. Some 
of the most common are defined here and the verbal equivalent for the preceding example 
is given for each:

• The negation of a proposition is denoted ~p, which is true only when p is not true.

a) "5 is not a multiple of 2," which is true since p is false.
• The conjunction of two propositions is true only when both p and q are true and  

it is written as follows:

a) "5 is a multiple of 2 and 6 is a multiple of 3," which is false since p is false.

𝑝𝑝 ∧ 𝑞𝑞 
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• The disjunction of two propositions is true when p or q (or both) is true, and it is 
written as follows:

a) "5 is a multiple of 2 or 6 is a multiple of 3," which is true since q is true.

b) The disjunction is sometimes called the inclusive "or."
• The conditional or implication is true if p is false or q is true and is written  

as follows:

a) "If 5 is a multiple of 2, then 6 is a multiple of 3," which is true since p is false.

b)  You can think of a conditional as saying that q is a consequence of p being true.  
It does not say anything about q if p is false.

c)  Stated in another way, a conditional is only false in the situation where p is true 
and q is false. In other words, if the conditional is true, p cannot be true unless q 
is also true.

d) We will frequently say p implies q.
• The biconditional is true if p and q are both true or both false and is written  

as follows:

a)  "5 is a multiple of 2 if and only if 6 is a multiple of 3," which is false since p is 
false, but q is true.

b) Stated a different way, this means p and q are equivalent propositions.
The following figure shows a summary of the common logical connectives we have 
discussed:

 

Figure 2.2 – Logical connectives

𝑝𝑝 ∨ 𝑞𝑞 

𝑝𝑝 → 𝑞𝑞 

𝑝𝑝 ↔ 𝑞𝑞 
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Next, we will learn about truth tables, which provide us with a way to determine whether 
different compound propositions are equivalent or whether they disagree with one 
another under some circumstances.

Truth Tables
As you might suspect, it is possible to build complex propositions by combining more and 
more simple propositions with logical connectives, as follows:

It would be somewhat difficult to determine whether this is a valid argument by pure 
thought, so a diagram would be helpful. This is exactly what truth tables do. They let 
us break complex logical propositions down into their component parts and determine 
whether arguments are valid.

More specifically, a truth table is a table of binary values (0 for false and 1 for true), where 
we consider every possible combination of truth-values (true or false) of the simple 
propositions and can determine truth-values by applying one logical connective at a time. 
As an exercise, let's build a truth table for each of the common logical connectives. The 
first one is the negation:

 

Figure 2.3 – Truth table for the negation connective

This truth table is small—it only involves one proposition, which can be true or false. Of 
course, the negation just has opposite truth-values in each case.

The other logical connectives involve two propositions, so there are more states—we need 
to consider every combination of truth-values for each proposition. We present them in 
the following figure:

 

Figure 2.4 – Truth tables for the binary logical connectives

(𝑝𝑝 → 𝑞𝑞) ∧ (𝑞𝑞 → 𝑟𝑟) → (𝑝𝑝 → 𝑟𝑟) 
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These tables are pretty simple to create for these simple logical connectives, and more or 
less simply represent the definitions in a table form.

Let's see how we can check whether some arguments are equivalent with some examples.

Example – The Converse
A conditional, "if p, then q" looks as follows:

The converse is the conditional in the opposite direction, "if q, then p," which looks as 
follows:

The question is: are these propositions equivalent to each other? Let's construct a truth 
table containing both of these propositions and see whether they are equivalent:

 

Figure 2.5 – Truth table for a conditional and its converse. The columns containing the truth-values of 
the two propositions being compared are shaded

Notice that the two conditionals do not always agree with one another. If one statement is 
true but the other is false, the conditionals do not have the same truth-values, so they are 
not equivalent. In other words, the biconditional is false:

This means that, if p implies q, it is not necessarily true that q implies p. This should make 
some sense intuitively. For example, it is true that "if n is divisible by 4, then n is divisible 
by 2," but it is not true that "if n is divisible by 2, then n is divisible by 4" because n could 
be 6 or 10, which are not divisible by 4.

Let's consider another example that has some important consequences for arguments.

𝑝𝑝 → 𝑞𝑞 

𝑞𝑞 → 𝑝𝑝 

(𝑝𝑝 → 𝑞𝑞) ↔ (𝑞𝑞 → 𝑝𝑝) 
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Example – Transitivity Law of Conditional Logic
If we show p implies q and q implies r, it seems intuitive that we could simply say p implies 
r, but can we show this with a truth table? In other words, can we establish the difficult 
proposition we wrote previously?

Let's create a truth table. This time, we have three basic propositions in p, q, and r, so 
our truth table will need to consider every combination of truth-values of these three 
propositions:

 

Figure 2.6 – A truth table confirming the transitive rule. The columns containing the truth-values of the 
two propositions being compared are shaded

Therefore, we see the proposition in the rightmost column is always true. This means, 
regardless of the truth-values of the propositions p, q, and r, the proposition is true. 
Therefore, anytime we can prove p implies q and q implies r, we have automatically proven 
p implies r. As a result, we can chain implications in a sequence to establish a conclusion. 
This is sometimes called the transitivity law for implications.

Let's try another example.

(𝑝𝑝 → 𝑞𝑞) ∧ (𝑞𝑞 → 𝑟𝑟) → (𝑝𝑝 → 𝑟𝑟) 
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Example – De Morgan's Laws
Suppose we have two propositions, p and q, and consider the negation of their 
conjunction. We would like to prove De Morgan's laws, one of which states this is 
equivalent to the disjunction of their negations. In symbols, this looks as follows:

In simpler words, this says that "p and q are not both true" is equivalent to stating "p is not 
true, or q is not true." Let's use a truth table to see whether it is true:

 

Figure 2.7 – A truth table confirming one of De Morgan's laws. The columns containing the truth-values 
of the two propositions being compared are shaded

As we see from the truth table, this one of De Morgan's laws is true since the two sides of 
the biconditional are equivalent to one another. It should be noted there is another of De 
Morgan's laws that may be written as follows:

This one says that "p or q is not true" (keeping in mind this is the inclusive "or") is 
equivalent to "p is not true and q is not true." This one can be proven very similarly in the 
next truth table:

 

Figure 2.8 – A truth table confirming another of De Morgan's laws. The columns containing the 
truth-values of the two propositions being compared are shaded

~(𝑝𝑝 ∧ 𝑞𝑞) ↔ (~𝑝𝑝 ∨ ~𝑞𝑞) 

~(𝑝𝑝 ∨ 𝑞𝑞) ↔ (~𝑝𝑝 ∧ ~𝑞𝑞) 
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These laws are named for Augustus De Morgan, who first stated them in terms of formal 
logic as we have here in the 1800s, although the ideas were known before this. These laws 
can allow us to do a trick to convert something we would like to prove, such as "p and 
q are not both true," and instead prove "p is false or q is false," which may sound like an 
obvious step, but when the propositions become much more complex, it is not always  
so easy.

Let's look at one more example that can provide a helpful trick for proofs that is far less 
obvious.

Example –  The Contrapositive
Suppose we need to prove p implies q:

But this proves difficult. It turns out that there is an alternative: the contrapositive. The 
contrapositive says, "not q implies not p," which looks as follows:

The contrapositive seems similar to the converse, except for the negations on each side of 
the conditional. Let's compare them on a truth table:

 

Figure 2.9 – A truth table confirming the conditional is equivalent to the contrapositive. The columns 
containing the truth-values of the two propositions being compared are shaded

As we can see from the truth table, the conditional is true precisely when the 
contrapositive is true, so the two ideas are equivalent. We will see a way in which this can 
be used to drastically shorten a mathematical proof as follows.

𝑝𝑝 → 𝑞𝑞 

~𝑞𝑞 → ~𝑝𝑝 
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With these formal logical results in hand, we will move on to discussing some different 
styles of mathematical proofs, all of which are valid logical arguments, and some examples 
where they can be applied. We encourage you to read the mathematical claim we make 
and try to prove it on your own before reading our proofs. The best way to improve with 
making mathematical arguments is to try them on your own.

The subject matter is not especially important to building skills with mathematical proofs, 
so we have chosen many examples using only simple topics such as whole numbers. 
We believe this is the best way to learn how to construct proofs so that you can focus 
on the structure of the arguments without too much distraction. This will allow you to 
focus on the skills needed to practice the careful styles of thought required to establish 
mathematical truth.

In this section, we learned about the basic terminology for formal logic, common logical 
connectives such as negation, conjunction, disjunction, conditional, and so on. We also 
learned about truth tables and came up with multiple truth tables for examining the 
transitivity law of conditional logic, contrapositive, De Morgan's laws, and so on. 

In the next section, we will use the ideas covered in this section and investigate 
mathematical proofs. 

Direct Mathematical Proofs
In this section, we will look into how mathematical proofs are constructed and understand 
this with a few simple examples. 

The simplest way to establish a mathematical truth is through a direct proof that shows the 
definitions of the terms led through a sequence of deductions that lead to the conclusion 
we wish to prove.

Let's look at a simple example and construct our own proof showing that the product of 
an even and an odd integer is itself an even number.

Example – Products of Even and Odd Integers
Let x be an even integer. This means x is a multiple of 2, so there exists an integer n where 
we have the following:

x = 2n
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Let y be an odd integer. This means y is not a multiple of 2, which means when we divide 
it by 2, we will have a remainder of 1, which means there is an integer m such that we have 
the following:

y = 2m + 1

If we multiply them together, we find the following:

xy = (2n)(2m + 1)

xy = 4nm + 2n

xy = 2(2nm + n)

Since 2nm + n is made up of a product and sum of integers, it is also an integer. Therefore, 
the product of x and y equals 2 multiplied by an integer. This means the product xy is  
a multiple of 2—in other words, it is an even integer.

As you can see, the ideas here were simple. We wrote down precisely what it means for x 
to be even and y to be odd. Then, we did some algebraic manipulations and found that the 
product xy is a multiple of 2 and, therefore, an even number.

The structure of any mathematical proof has some things in common: each step leads 
logically to the next. Constructing a valid proof, however, must follow very strict 
deductive steps. There can be absolutely no guesswork in a mathematical proof. We can 
add no extra assumptions without changing the statement we have proven. This can make 
proofs difficult to construct sometimes and the conclusions of a single proof are often 
somewhat narrow, but mathematical proofs establish quite possibly the closest thing to 
absolute truth humans can produce.

Let's try another proof, again regarding even and odd integers.

Example – roots of even numbers
Suppose n2 is an even number where n is a positive integer. We will determine whether n 
is even or odd. There are only two possibilities: n is even or n is odd. If n is even, there is  
a non-negative integer k where we have the following:

n = 2k

In this case, if we square n, we have the following:

n2 = (2k)(2k)

n2 = 4k2

n2 = 2(2k2)
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Therefore, n2 is 2 times 2k2. Clearly, 2k2 is an integer, so this means n2 is an even number.

We have not proven what we wanted to prove yet. We have instead proven the converse of 
the goal: if n is even, then n2 is even. As we saw in the previous section, the converse is not 
equivalent to the original conditional proposition. We are not finished, then. But, if we can 
show the only other possibility, that n is odd implies n2 is odd, then we can know that n 
must be even.

If n is odd, there is a non-negative integer m where we have the following:

n = 2m + 1

In this case, if we square n, we have the following:

n2 = (2m + 1)2

n2 = (2m + 1)(2m + 1)

n2 = 4m2 + 2m + 2m + 1

n2 = 4m2 + 4m + 1

n2 = 2(2m2 + 2m) + 1

Therefore, n2 equals 2 times 2m2 + 2m plus 1. Clearly 2m2 + 2m is an integer, so this means 
n2 is an odd number under the assumption we made, that n was odd.

In summary, we showed if n is odd, n2 must be odd, and if n is even, n2 must be even. 
Since these are the only possible states for n, this means if n2 is even, then n must be even.

Shortcut – The Contrapositive
We have successfully proven the preceding statement, but note that we can break the 
argument up into separate pieces:

p: n2 is even

q: n is even

We also proved that p implies q. However, it took significant time and effort and really did 
not flow from start to finish so easily. As we showed in the previous section, proving the 
conditional p implies q is equivalent to the contrapositive:

~𝑞𝑞 → ~𝑝𝑝 
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In this problem, this implication would read "if n is not even, then n2 is not even," or,  
we might say "if n is odd, then n2 is odd." We actually proved this in the example using 
the second batch of equations. It turns out, proving just that is the contrapositive, which 
is equivalent to the original goal of proving p implies q, so the contrapositive was a more 
efficient approach.

In this section, we learned about some simple mathematical proofs and worked on 
constructing them. We recommend adding the contrapositive to your toolbox of proof 
techniques for this sort of situation. It is helpful to try to use it when a direct proof seems 
difficult, but it is easy to state the negations of the propositions making up the conditional 
we hope to prove.

In the next section, we will learn about proving by contradiction. 

Proof by Contradiction
In this section, we will learn about using contradiction for mathematical proofs. Proof by 
contradiction is a method of proof where you first assume the claim you wish to prove is 
false, and then prove through a series of logical deductions that this assumption results in 
a contradictory claim. If this happens, and we have made no errors, this assumption that 
the claim was false must have been incorrect. Thus, the claim must be true.

While this idea may make sense abstractly and we see the proof method is confirmed 
by formal logic, the authors believe the method is best demonstrated by examples if you 
hope to build some intuitive understanding of the approach, learn when it is likely to be 
effective, and construct your own mathematical proofs.

First, let's review some ideas we all probably learned in primary school. Recall a real 
number x is called rational if it can be written as a ratio:

Here, a and b ≠ 0 are relatively prime integers—that is, numbers who share no common 
factors or only a common factor of 1—a and b may be negative or positive whole 
numbers, and a could be 0. For example, the following numbers are rational:

Of these rational numbers, note that only one of these numbers, five-sevenths, is actually 
written as a ratio of two relatively prime numbers. The keywords in the definition of 
rational numbers are that they can be written in this way. Note that all the numbers listed 
can be written this way, meaning they are in fact rational numbers:

𝑥𝑥 = 𝑎𝑎
𝑏𝑏 

0.5, 57 ,
10
100 ,

40
2 ,−129103412812008 , 3, 𝜋𝜋2𝜋𝜋 , 0 
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Figure 2.10 – Each of the rational numbers can be written as a ratio of two relatively prime integers

It would not be unexpected if your first question is "Are there any numbers that cannot 
be written as a fraction?" The answer is certainly yes, but the great ancient Greek 
mathematicians such as Pythagoras and Euclid debated this question for centuries before 
it was settled that, in fact, there are numbers that cannot be written as such a ratio. So, this 
is a good question, and you are in good company if you thought to ask it!

Let's see a couple of examples related to rational numbers.

Example – is there a smallest positive rational 
number?
The problem here is simple to state: is there a smallest positive rational number? But how 
can we tackle this? It seems unlikely that we could create a tiny number and somehow 
claim it is the smallest possible one, although it is also not clear that we can say there isn't 
such a number. Since no direct path to a proof seems obvious, let's try to prove there is no 
such number by proof by contradiction.

Suppose x is the smallest positive rational number. Since it is rational, we can write the 
following:

𝑥𝑥 = 𝑎𝑎
𝑏𝑏 
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Here, a and b are relatively prime integers, both of which have the same sign since x is 
positive. If we divide x by 2, we get a smaller number:

This number is still positive as no signs have changed. b is a nonzero integer, so 2b is also 
a nonzero integer of the same sign. Therefore, y is a positive rational number that is less 
than x. This contradicts the assumption that x is the smallest integer. Thus, if you give me 
any rational number, I can always give you a smaller one by dividing it by 2, so there is no 
smallest positive rational number.

This was a nice, simple example of proof by contradiction, but let's try another one that is 
pretty simple in principle, but probably not at all obvious.

Example – Prove √𝟐𝟐  is an Irrational Number
In this example, we will prove the square root of 2 is irrational, which should put this 
question to rest. In other words, we will prove the square root of 2 is not rational. We will 
set up a proof by contradiction.

First, assume the square root of 2 is rational. Therefore, by definition, there exist relatively 
prime numbers a and b where we have the following:

But if we square both sides of the equation, we find the following:

 

Since b is an integer, so is b2, so a2 is two times an integer, which means a2 is a multiple of 
2—in other words, a2 is an even number. As we have proven previously, this means a must 
be an even number, so there is an integer n where a = 2n, so we can rewrite the preceding 
equation as follows:

 
 

Therefore, b2 is an even number, which we have shown implies b is an even number.

𝑦𝑦 = 𝑎𝑎
2𝑏𝑏 

√2 = 𝑎𝑎
𝑏𝑏 

2 = 𝑎𝑎2
𝑏𝑏2  

 2𝑏𝑏2 = 𝑎𝑎2 

2𝑏𝑏2 = (2𝑛𝑛)2 
 2𝑏𝑏2 = 4𝑛𝑛2 

 𝑏𝑏2 = 2𝑛𝑛2 
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We have shown both a and b are even numbers, so they share a factor of 2, meaning they 
are not relatively prime integers. We previously assumed the square root of 2 was rational 
and could be written as the ratio of relatively prime integers a and b. Then, the assumption 
that the square root of 2 is irrational leads to a contradiction that a and b both are and are 
not relatively prime integers.

Next is a famous example of proof by contradiction regarding prime numbers used by 
Euclid in approximately 300 BCE. It is actually one of the first known uses of proof by 
contradiction.

Example – How Many Prime Numbers Are There?
A prime number is a positive integer greater than 1 that is only divisible by 1 and itself. 
The first few prime numbers are 2, 3, 5, 7, and 11. Note that the numbers we skipped have 
divisors other than 1 and the number itself. Clearly, 4, 6, 8, and 10 are divisible by 2 and, 
indeed, all even numbers except 2 will be prime. 9 is an odd number, but it is not prime 
since it is divisible by 3.

The prime numbers are sometimes called the building blocks of the positive integers 
because all positive integers can be written as a product of a unique set of prime numbers, 
called its prime factorization. Take the following example:

 

Indeed, no matter how large the initial number, this can be done! Another example is the 
following:

Once again, this is made up entirely of prime factors. In each case, the numbers cannot be 
broken down into smaller factors, so these factorizations are unique.

The result is now called the fundamental theorem of arithmetic. But interest in primes 
goes back to at least ancient Egypt. The Rhind Mathematical Papyrus is an Egyptian 
artifact dating to 1500 BCE with some computations with primes! But we know much 
more about the work of ancient Greeks mathematicians with primes. They were quite 
intrigued by prime numbers. In fact, Euclid proved prime factorizations are unique for all 
numbers in approximately 300 BCE. A question that arose millennia ago was: "How many 
prime numbers are there?" According to Euclid, there are infinitely many. But how could 
he know that? Dealing with infinity can be subtle, so it seems impractical to attempt to 
prove this directly. In such a situation, where a direct path to a proof seems difficult,  
proof by contradiction is one of the tools in the toolbox of a seasoned mathematician.  
Let's try it!

15 = 3 ⋅ 5 
 108 = 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 3 

35609874300 = 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 5 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 29 ⋅ 29 ⋅ 47 
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Assume there are finitely many prime numbers. Without loss of generality, suppose the 
number of primes is a finite positive integer m and let's name all primes p1, p2, …, pm. Let n 
be a number equal to the product of all the primes plus 1:

This means n – 1 is divisible by p1, p2, …, pm—that is, all of the primes. Each prime number 
is greater than 1 by definition. Therefore, dividing n by any prime number would have a 
remainder of 1. Therefore, n is not divisible by any of these prime numbers.

By Euclid's fundamental theorem of arithmetic, all positive integers have a unique prime 
factorization, so there must be another prime number not in our set. This contradicts 
the assumption that there are m primes, which was an arbitrary choice of number, so the 
assumption that there are finitely many primes leads to this contradiction. Hence, the 
opposite must be true: there are infinitely many primes.

Now, this has completed the proof, but let's zoom in on one point. We said m was an 
arbitrary choice, which led to the conclusion we made previously. However, this point is 
not too obvious to the uninitiated. 

Let's think about this. If we assumed there were m primes, we concluded there are at least 
m + 1 prime numbers. Say we repeat this argument with the following:

We will conclude there are at least m + 2 primes, and this could go on forever! No matter 
how many primes there are, we have proven there is at least one more!

In this section, we learned about proving by contraction and applied this idea to a few 
examples. 

In the next section, we will learn about proving by induction. 

Proof by mathematical induction
Mathematical induction allows us to prove each of an infinite sequence of logical 
statements, p1, p2, ..., is true. The argument involves two steps:

• Basis step: Prove p1 is true.

• Inductive step: For a fixed i ≥ 2 value, assume pi-1 is true and prove pi is true.

If both steps are done successfully, the conclusion is that p1, p2, ... are all true.

𝑛𝑛 = 𝑝𝑝1𝑝𝑝2⋯𝑝𝑝𝑚𝑚 + 1 

𝑛𝑛 = 𝑝𝑝1𝑝𝑝2⋯𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚+1 + 1 
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But how can we make this conclusion? The idea is that we have shown p1 is true and that 
each pi is true assuming pi-1 is true. Therefore, let i = 1, then p2 is true. Let i = 2, then p3 is 
true. Let i = 3, then p4 is true. This pattern continues indefinitely, so each pn must be true.

Mathematical induction can be thought of as an infinite line of dominoes standing on 
their edges. If you knock one over, it falls into the next, which falls into the next, which 
falls into the next, and on and on.

This discussion is admittedly a bit abstract, so let's actually do some proofs by 
mathematical induction to understand how it can be used.

Example – Adding 1 + 2 + … + n
Suppose we wish to show that, for any positive integer n, the following formula is true:

We need to show that this is true for all positive integers, n = 1, 2, 3, …, so we get an 
infinite chain of statements we want to prove:

Figure 2.11 – Adding example

First, the basis step. Let n = 1; then, the left side of the equation is 1 and the right side is 
the following:

So, the formula is true for n = 1. In other words, p1 is true.

1 + 2 + 3 +⋯+ 𝑛𝑛 = 𝑛𝑛(𝑛𝑛 + 1)
2  

1(1 + 1)
2 = 2

2 = 1, 
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Second, the inductive step. Let n = i – 1 and assume pi-1 is true, which means the 
following:

Let's add i to both sides and try to prove pi is true:

 

 

 

 

At last, the final line is precisely pi. Therefore, we have proven pi is true, so, by induction, 
we have proven the following:

This is for any natural number n by the method of mathematical induction.

In summary, we proved p1 is true for the basis step; that is, the formula is correct for n = 
1. Then, we assumed the formula is correct for the sum of the first i – 1 positive integers 
for some i ≥ 2. In other words, we assumed pi–1 is true. Next, we showed this assumption 
implies pi is true, meaning the formula is correct for the sum of the first i positive integers.

This is the principle of mathematical induction in action, and we are done with the proof 
because, if we let i = 2, the proof from the basis step for pi–1 = p1 implies pi = p2 is true by 
the inductive step, which implies p3 is true, which implies p4 is true, and on and on, so the 
formula is true for any n.

It is important to realize these proof methods can be used with many types of 
mathematical structures, not just numbers, so let's consider a more interesting geometric 
use of the principle of mathematical induction.

1 + 2 + 3 +⋯+ (𝑖𝑖 − 1) = (𝑖𝑖 − 1)𝑖𝑖
2  

1+ 2 + 3 +⋯+ (𝑖𝑖 − 1) + 𝑖𝑖 =
(𝑖𝑖 − 1)𝑖𝑖

2 + 𝑖𝑖 
 

1 + 2 + 3 +⋯+ 𝑖𝑖 =
(𝑖𝑖 − 1)𝑖𝑖

2 + 2𝑖𝑖
2  

 
1 + 2 + 3 +⋯+ 𝑖𝑖 = 𝑖𝑖2 − 𝑖𝑖 + 2𝑖𝑖

2  
 

1 + 2 + 3 +⋯+ 𝑖𝑖 = 𝑖𝑖2 + 𝑖𝑖
2  

 
1 + 2 + 3 +⋯+ 𝑖𝑖 = 𝑖𝑖(𝑖𝑖 + 1)

2  

1 + 2 + 3 +⋯+ 𝑛𝑛 = 𝑛𝑛(𝑛𝑛 + 1)
2  
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Example – Space-Filling Shapes
Suppose we have a grid of squares that is 2n in length and 2n in height for some positive 
integer n. Then, we will call the following specific type of octagon a T-gon, although it 
may be rotated:

 

Figure 2.12 – A T-gon is a shape like the letter T

We will seek to prove that any 2n-by-2n grid with n ≥ 2 can be filled with non-overlapping 
T-gons that will only cover space inside the grid. In other words, T-gons can tile the grid. 
We can break this claim down into a sequence of statements:

• p2: A 22-by-22 grid can be tiled with T-gons.

• p3: A 23-by-23 grid can be tiled with T-gons.

• p4: A 24-by-24 grid can be tiled with T-gons.

And so on as the exponents grow. Note that we are starting at p2. We could call it p1 as we 
have before, but it is easier to simply start at p2, so the subscript corresponds to n.

For the basis step, let n = 2 so that the grid has the shape 22 × 22 = 4 × 4. This is a small 
enough grid that we can easily show that four T-gons can fill this grid—that is, we can 
prove p2—as we see here:

 

Figure 2.13 – A 4-by-4 grid can be filled with four T-gons rotated as shown here
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For the inductive step, let i ≥ 3 and assume that pi – 1 is true; that is, a 2i – 1-by-2i – 1 grid can 
be tiled by T-gons. An important insight is that a 2i-by-2i grid can be made up of four  
2i – 1-by-2i – 1-adjacent grids aligned in the way displayed in the following diagram:

 

Figure 2.14 – One 2i-by-2i grid is made up of four adjacent 2i – 1-by-2i – 1 grids

Now, since pi – 1 tells us each of these 2i – 1-by-2i – 1 grids can be tiled by T-gons, we can 
simply tile all four of those in the preceding figure so that the larger 2i-by-2i grid is tiled 
by T-gons; that is, pi is true. In other words, pi – 1 being true implies pi is true, so T-gons can 
tile any grid of dimensions 2n-by-2n by the principle of mathematical induction, so this 
completes the proof.

So, we have seen some nice toy examples that are good for understanding the method of 
proof by mathematical induction, but let's try another problem that has some practical 
implications for comparing the speeds of algorithms, a topic we will study deeply later in 
the book.

Example – exponential versus factorial growth
It turns out that different algorithms react differently to having a different number of 
inputs, usually corresponding to bigger problems. An exponential algorithm with n inputs 
might require the computer to do 2n arithmetic operations, while a factorial algorithm 
with n inputs might require a number of operations equal to the following:

As n grows, the sequences n! and 2n accelerate and grow quickly, but which one grows 
faster? Does one grow faster for early n but slower for larger n? This is really not obvious at 
all. Let's look at a plot of the two sequences to see how they seem to compare:

𝑛𝑛! = 1 ⋅ 2 ⋅ 3⋯𝑛𝑛 
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Figure 2.15 – Plots of n! and 2n

From this plot, we see the factorial sequence surpasses the exponential sequence when n = 
4, and seems to remain higher, but our plot only goes up to n = 5, so it is not obvious what 
may happen as n continues to grow, so let's try to prove n! > 2n for n ≥ 4.

To set up an inductive proof, say we have the following:

And so on for p6, p7, …. Here, we do not look at p1, p2, and p3 because we see n! is smaller 
than 2n for these values. We are more interested in when the comparison with n gets 
larger. Keep in mind that we still have an infinite sequence of pi statements to prove, but 
we simply start at p4.

For the basis step, we can easily see that 4! = (4)(3)(2)(1) = 24 and 24 = 16, so we have 4! > 
24, which confirms p4 is true.

For the inductive step, we will assume pi – 1 is true for some value i ≥ 5, which means the 
following:

𝑝𝑝4 ∶ 4! > 24 

𝑝𝑝5 ∶ 5! > 2^5 

(𝑖𝑖 − 1)! > 2𝑖𝑖−1 
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Let's try to prove pi is true. Multiply each side of the inequality by i to get the following:

 
 

 

Thus, pi is true. Therefore, n! > 2n for all n ≥ 4 by mathematical induction.

A conclusion we can make is that a factorial time algorithm is slower than an exponential 
time algorithm for any reasonably large problem because the number of computations 
required will be higher for factorial time algorithms, in fact much higher as n grows. This 
is a topic we'll study in much more detail in Chapter 7, Computational Requirements for 
Algorithms.

Summary
In this chapter, we introduced the primary results of formal logic and proved logical 
statements by using truth tables. We also learned about constructing mathematical 
proofs using several methods, such as direct proofs, proofs by contradiction, and proofs 
by mathematical induction. In addition, these different methods for constructing 
mathematical proofs were accompanied by simple step-by-step examples to help you think 
like a mathematician and use deductive thought, which will be helpful for the rest of the 
chapters in this book. 

In the next chapter, we will learn about numbers in base n and perform some arithmetic 
operations with them. We will also learn about binary and hexadecimal numbers and their 
uses in computer science.

𝑖𝑖(𝑖𝑖 − 1)! > 2𝑖𝑖−1 ⋅ 𝑖𝑖 
 𝑖𝑖! > 2𝑖𝑖−1 ⋅ 5 

 𝑖𝑖! > 2𝑖𝑖−1 ⋅ 2 
 𝑖𝑖! > 2𝑖𝑖 



3
Computing with 
Base-n Numbers

We are all accustomed to decimal (base-10) numbers. In this chapter, we will introduce 
numbers in other bases, describe arithmetic operations with those numbers, and convert 
numbers from one base to another. We will then move to binary digits (base-2), which 
are the foundation on which all computer operations are built, develop an approach to 
efficient arithmetic with them, and look at some of the core uses of binary, including 
Boolean algebra. Lastly, we will discuss hexadecimal (base-16) numbers and their uses in 
computer science. We will use Python code to do some computations such as converting 
decimal numbers to binary and hexadecimal and use Boolean operators to select and view 
data that satisfies a certain criterion. 

In this chapter, we will be covering the following topics:

• Base-n numbers

• Converting between bases

• Binary numbers and their application

• Boolean algebra

• Hexadecimal numbers and their application 
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By the end of this chapter, you should be able to write numbers in different bases and 
convert numbers from one base to another. For example, 123 is a base-10 number that 
can be converted into other bases, depending on the need. You will also learn about the 
importance of binary and hexadecimal number systems along with their applications in 
computer science. 

Important Note
Please navigate to the graphic bundle link to refer to the color images for  
this chapter.

Understanding base-n numbers 
In this section, we will discuss how to write numbers in different bases with the help of 
some examples. 

A base-n system uses n different symbols for writing numbers, as in 0, 1, 2, …, n – 1.  
This n is called the radix of the numbering system. Of course, the customary base-10,  
or decimal, numbers use the digits 0 through 9.

All base-n numbers make use of the positional system, like the one used by decimal 
numbers, which we will discuss in the next example.

Example – Decimal numbers
Let's think about what it means to write the decimal number 3214 with the usual 
positional system. It seems trivial, but it is important to realize what exactly a digit in each 
position in this number represents in order to understand the commonality between the 
base-10 system we all know and this new idea of a base-n system. The number is made up 
of a sum of three thousands (103), two hundreds (102), one ten (101), and four ones (100), 
which we can write as follows:

3214 = 3 ∙ 103 + 2 ∙ 102 + 1 ∙ 101 + 4 ∙ 100

To distinguish between numbers written in different radixes, the radix is written as  
a subscript after the number. For example, 3214 in base-6 form is written as (3214)6. If no 
radix is specified, it is assumed to be in decimal (base-10) form unless the context makes 
some other base clear. As we can see, this number represented by this sequence of digits in 
base-6 has a very different value than the same sequence of symbols in decimal.

There is an unlimited number of different base-n systems, as we could theoretically use 
any real number for n, but only certain systems have been used frequently in applications. 
Some of the most widely used ones are noted in the following table:
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Figure 3.1 – Common base-n numbering systems

Note that when we have bases larger than 10, we can no longer simply use a subset of 
the digits 0 through 9. For example, the hexadecimal system, which is commonly used 
in a number of applications in computer science, needs 16 distinct symbols, so it uses 0 
through 9 and also the letters A through F. These letters represent the equivalent of the 
decimal numbers 11 through 15. We will learn about the hexadecimal number system 
later in this chapter. 

Definition – Base-n numbers
A non-negative integer number can be represented in base-n as follows:

(dkdk-1 ∙ ∙ ∙ d1d0)n,

Here, the digits d0 through dk are not multiplied, but just written side by side.  
The decimal value of this number is this:

dkn
k + dk-1n

k-1 + ∙∙∙ + d1n
1 + d0n

0

Now that we have a definition of base-n numbers and we have seen some examples,  
we can think about what it means to convert between different bases.

Converting between bases
Now that we have the basic knowledge about base-n numbers, let's move on and see how 
these numbers transform between different bases. We can transform numbers in any base 
to base-10 and vice versa. In this section, we will show the conversion between different 
bases along with examples and Python code. 
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Converting base-n numbers to decimal numbers
Using the definition of base-n numbers given previously, we can convert the following 
numbers to base-10, or decimal, form. Several examples follow:

• (a)n = a ∙ n0 = a

• (ab)n = a ∙ n1 + b ∙ n0 = an + b

• (abc)n = a ∙ n2 + b ∙ n1 + c ∙ n0 = an2 + bn + c

• (abcd)n = a ∙ n3 + b ∙ n2 + c ∙ n1 + d ∙ n0 = an3 + bn2 + cn + d

We can apply this according to the number of digits we have.

Example – Decimal value of a base-6 number
Let's convert the number (3214)6 into decimal form for this example:

(3214)6 = 3 ∙ 63 + 2 ∙ 62 + 1 ∙ 61 + 4 ∙ 60 = 648 + 72 + 6 + 4 = 730

This is far from the decimal number 3214. We can see that the same number (here 3214) 
has a different value based on the base it is written in. The most-used base is base-10. 

Base-n to decimal conversion 
To convert a decimal number to a certain base n, we repeatedly divide the number at hand 
by n and keep track of the remainders as we proceed with the division. Let's illustrate this 
procedure with the help of an example.

Example – Decimal to base-2 (binary) conversion 
Let's convert 357 into binary form. 

We repeatedly divide 357 by 2 and keep track of the remainders. First, we divide 357 by 2 
to get 178 with a remainder of 1, which we write on the right side of the following table.  
In the next row, we divide 178 by 2 to get 89 with no remainder (0). We continue this in 
each row until we are unable to do it anymore:
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Figure 3.2 – Converting a decimal number to binary

Now that we have the divisions performed and the remainders noted down, we can  
follow the direction of the arrows to get our binary number, that is, (101100101)2. This 
method can be used to convert a decimal number to any non-decimal base (base-2 for  
this example). 

Now that we know how to do the conversion, let's investigate why this method works. For 
our current example, in order to convert into base-2, we repeatedly divide by 2, and so 
the remainders can only be 0 (for even numbers) or 1 (for odd numbers). Hence, a base-2 
number only uses 0 and 1 for its representation. 

The same goes for numbers represented in other bases. For example, to convert a decimal 
number to base-7, we would repeatedly divide by 7, and so the possible remainders vary 
from 0 through 6, which are the digits for representing a base-7 number. 

Let's do some more examples to make this clearer. 
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Example – Decimal to binary and hexadecimal 
conversions in Python
Let's use Python to convert a decimal number to binary and hexadecimal. When  
you run the code, it will prompt you to enter a number of your choice, which will then  
be converted into both binary and hexadecimal numbers:

# TypeConversion from decimal with base 10
# to hexadecimal form with base 16
# to binary form with the base 2 

# Taking input from user - an integer with base 10
number = int(input("Enter a number with base 10\n"))
# Converting the decimal number input by user to Hexadecimal 
print("Hexadecimal form of " + str(number) + " is " + 
  hex(number).lstrip("0x").rstrip("L"))
# Converting the decimal number input by user to Binary 
print("Binary form of " + str(number) + " is " + bin(number).
  lstrip("0b").rstrip("L"))

The output, if the user inputs 12345, is as follows:

Enter a number with base 10
123456
Hexadecimal form of 123456 is 1e240
Binary form of 123456 is 11110001001000000

From the preceding example, we can see that the hexadecimal number system is shorter 
and therefore easier to work with as compared to the binary number system. 

In this section, we learned about different number systems and how to convert numbers 
from one base to another. 

Next, we will continue to discuss a few applications in computer science of binary (base-2) 
numbers and hexadecimal (base-16) numbers.
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Binary numbers and their applications 
In this section, we will learn about the binary number system in detail along with its 
applications and importance in computer science. In particular, we will consider a brief 
history of binary, provide an explanation as to why they are so foundational to how 
computers work, and examine the link between binary numbers and Boolean algebra and 
its use in databases. 

The modern binary number system, which is the basis for binary code, was invented by 
Gottfried Leibniz in 1689, which he described in his article Explication de l'Arithmétique 
Binaire (translated as "explanation of binary arithmetic").

Binary numbers are represented in a base-2 system. The only digits used to represent  
a binary number are "0" and "1." Each digit is called a bit. A binary string of eight bits can 
represent any of 256 (28) possible values. 

A bit string is not the only kind of binary code; other systems that allow only two choices, 
such as ON/OFF or True/False, can be binary in nature. One such example is Braille, 
developed by Louis Braille. Braille is widely used by the blind to read and write by touch. 
This system consists of grids of six dots each, three per column, in which each dot has 
two states: raised or not raised. Different combinations of these raised or flattened dots 
represent different letters, numbers, punctuation, and so on. Here are some examples of 
how alphabets are written in Braille by making use of raised and flattened dots:

Figure 3.3 – Alphabets in Braille

The importance of the binary number system to the development of computers goes 
way back to 1946, when the first electric general-purpose digital computer – Electronic 
Numerical Integrator and Computer (ENIAC) – was built at the University of 
Pennsylvania. 

The brain of a computer (the CPU) has many circuits that are made up of a large number 
of transistors. Transistors are analogous to a "switch" that can be turned to the ON  
or OFF states based on the signal it receives. The binary digits 0 and 1 reflect the OFF  
and ON states of a transistor. The user provides the computer with a set of instructions  
for the computer to do a task. These instructions/commands are translated (by a compiler) 
into binary code for the computer to understand and execute. All the data, information, 
music, pictures, and so on are processed and stored in binary form by the computer. 
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As mentioned before, a 0 or a 1 is called a bit. A group of eight bits is called a byte.  
Let's try representing multiples of bytes in the decimal and binary systems: 

Figure 3.4 – Multiples of bytes and their value in metric and binary systems

The binary interpretation of metric prefixes is used by most operating systems.

Boolean algebra 
In this section, we will learn about Boolean algebra in detail, along with its applications, 
such as logic gates. Boolean operators are very useful in filtering out and viewing data that 
meets certain criterion; this will be illustrated by using Python to solve an example. 

George Boole introduced the idea of Boolean algebra in his book titled The Mathematical 
Analysis of Logic in 1847. Boolean algebra is a subset of algebra in which values of 
variables are either "True" (1) or "False" (0). The main operations of Boolean algebra are 
detailed here.

The AND operator 
This operator states that for an output to occur, two or more events must happen 
simultaneously. However, the order in which the individual events occur is irrelevant. 
We use & to represent the AND operator. Hence, we can say that A & B = B & A, which 
means it agrees with commutative law.

Boolean algebra has applications in electronics. Let's try to understand the AND operator 
by making use of a simple electric circuit comprising a lamp, a battery, and two switches 
(A and B), as shown in the following figure:
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Figure 3.5 – A circuit showing an AND operator

For the lamp to glow, both switches A and B must be in the "ON" (1) position. If either of 
the switches is ON with the other in the OFF position, then the circuit is incomplete, and 
the lamp does not glow. The following figure shows the application of Boolean algebra of 0 
and 1 to electronic hardware comprising logic gates connected to form a circuit diagram:

Figure 3.6 – AND gates

If A and B are switches, then both must be closed (=1) for the circuit to be closed and the 
current to flow. If either of the switches is open, then the circuit is open and the current 
does not flow. 

Mathematically, it can be written as A ^ B. If A=1 and B=1, then A ^ B =1, otherwise A ^ 
B = 0. This can be represented by the following figure: 

Figure 3.7 – The AND operator

Let's learn about the OR operator in the next section.
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The OR operator
This operator states that for an output to occur, either of two conditions needs to be true. 
Let's try to understand this by making use of electric circuits. In Figure 3.8, we can see that 
the circuit will be closed, and the lamp will glow if either switch A is ON or switch B is 
ON, or both are ON:

Figure 3.8 – A circuit showing the OR operator

Mathematically, this can be written as A V B: 

If A=1, B=1, then A V B =1.

If A=0, B=0, then A V B =0.

If A=1, B=0, then A V B =1.

If A=0, B=1, then A V B =1.
This can be represented by the following figure: 

Figure 3.9 – The OR operator
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The AND and OR operators can be summarized by making use of truth tables as shown in 
Figure 3.10. Here, 0 = False/OFF and 1 = True/ON: 

Figure 3.10 – A truth table for the AND and OR operators

Now that we know how the OR operator works, we will learn about the NOT operator in 
the next section.

The NOT operator 
This operator is used to reverse the truth value of an entire expression, from False to True 
or from True to False, depending on the situation. 

Let's say that a university wants to send a warning email to students whose GPA is less 
than 2.0. This statement can be reframed in another way – send a warning email to 
students whose GPA is not greater than 2.0. 

This operator can be represented by ¬A:

Figure 3.11 – The NOT operator
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The NOT operator is represented in a circuit diagram/logic gate as shown in the following 
figure:

Figure 3.12 – The NOT operator

The NOT operator can be summarized by making use of a truth table as shown in  
Figure 3.12. Here, 0 = False/OFF and 1 = True/ON: 

Figure 3.13 – A truth table for the NOT operator

Let's see how we can use all this theory about Boolean operators in an example. 

Example – Netflix users
Boolean operators can be used to select and view data that satisfies a certain criterion. 
Let's use the following table to show how our operators can be used in Python. Figure 3.13 
shows the customer addresses for 10 customers of Netflix:

Figure 3.14 – Netflix customer dataset
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For this example, we will be using a Python library called pandas. It is a fast, flexible, and 
easy-to-use open source data analysis and manipulation tool that is built on the top of the 
Python programming language.

Important note
Installing Python packages, such as pandas in this instance, is an important 
skill that everyone needs. Here's a link with detailed instructions regarding how 
to install different packages in Python: https://packaging.python.
org/tutorials/installing-packages/.

In addition, we will need to import our data to Python in order to use the code in this 
example. The data is stored in a Comma-Separated Value (CSV) file provided on GitHub 
called CustomerList.csv, which is available in the GitHub repository for this book. 
Be sure to download it and store it in the same directory where you store your code.

We will do the following for this example: 

• Use the AND operator to view the customers who live in the USA (AND) in the 
state of Georgia.

• Use the OR operator to view the customers who live either live in the USA or in the 
state of Ontario.

• Use the NOT operator to view the customers who do not live in the USA.

The Python code is as follows:

# Import packages with the functions we need
import pandas as pd

# Import the file you are trying to work with
customer_df = pd.read_csv("CustomerList.csv")

# Using AND operator
print("Example for AND operator")
print(customer_df.loc[(customer_df['Country'] == 'USA') & 
  (customer_df['State'] == 'Georgia')])

# Using OR operator 
print("Example for OR operator")
print(customer_df.loc[(customer_df['Country'] == 'USA') | 
  (customer_df['State'] == 'Ontario')])

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
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# Using NOT operator
print("Example for NOT operator")
print(customer_df.loc[(customer_df['Country'] != 'USA')])

The output is as follows:

Example for AND operator
   CustomerID Country    State     City Zip Code
0           1     USA  Georgia  Atlanta    30332
1           2     USA  Georgia  Atlanta    30331
Example for OR operator
   CustomerID Country    State       City Zip Code
0           1     USA  Georgia    Atlanta    30332
1           2     USA  Georgia    Atlanta    30331
2           3     USA  Florida  Melbourne    30912
3           4     USA  Florida      Tampa    30123
9          10  Canada  Ontario    Toronto  M4B 1B3
Example for NOT operator
   CustomerID  Country        State        City Zip Code
4           5    India    Karnataka  Bangalore    560001
5           6    India  Maharashtra      Mumbai   578234
6           7    India    Karnataka       Hubli   569823
7           8   India   Maharashtra      Mumbai   578234
8           9  Germany      Bavaria      Munich    80331
9          10   Canada      Ontario     Toronto  M4B 1B3

In the preceding example, we were able to display records that match a certain criterion – 
the first task was to view the customers that reside in the USA and in the state of Georgia. 
Records matching both these requirements were then displayed. Similarly, for the second 
part of the example, we were able to view the records of customers who either live in the 
USA or in the state of Ontario (in Canada). We used the OR operator to achieve this goal. 
Lastly, we used the NOT operator to view all the records for customers that do not reside 
in the USA; all the results except for the ones who reside in the USA were displayed. 

In this section, we learned about different kinds of logical operators and how they can be 
used to search and view results that match a certain criterion. In the next section, we will 
be discussing another kind of number system, called the hexadecimal number system, and 
learning about its application.
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Hexadecimal numbers and their application
In this section, we will learn about the hexadecimal number system and its application. 
We use hexadecimal numbers in our day-to-day lives without realizing, such as for the 
MAC address of your phone or computer. 

Hexadecimal numbers are base-16 numbers. They can be represented by using 10 digits (0 
to 9) and 6 letters (A = 10, B = 11, C = 12, D = 13, E = 14, F = 15). 

Let's look at some conversions between the decimal and hexadecimal number systems:

Figure 3.15 – Counting in hexadecimal

Just like decimal numbers, hexadecimal numbers also have place values:

(100)16 = (1 ∙ 162) + (0 ∙ 161) + (0 ∙ 160) = 256
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Computer programmers use hexadecimal numbers to simplify the binary number system. 
We know that 24 = 16, so we know there is a linear relationship between 2 and 16, which 
implies that four binary digits would be equivalent to one hexadecimal digit. In other 
words, since binary numbers can be represented by two digits (0 or 1) and hexadecimal 
numbers can be represented by 16 digits and letters, and we can write 16 as a power of  
2 (24), four binary digits would be equivalent to one hexadecimal digit. While computers 
use the binary numbering system, humans use the hexadecimal system to make things 
easier to understand. 

Example – Defining locations in computer memory
In the previous section, we learned that 1 byte = 8 bits. Hexadecimal numbers can 
characterize every byte as two hexadecimal digits as compared to eight digits when the 
binary number system is used. 

Let's work through an example to better understand how memory locations are defined 
on a computer, how different variables are stored in different memory locations, and how 
the values assigned to variables (and, hence, the memory locations) can be changed. We 
will do the following for this example: 

• We will define a peanut_butter variable and assign the value 6 to it. We will 
then print the memory location of where this variable is stored. 

• We will define another variable, sandwich, and assign it the same value as 
peanut_butter. When we print the memory location of this variable, we will 
see that it is the same as for peanut_butter. This is because we assigned the 
same value (6) to both our variables, and so they were stored in the same memory 
location. 

• We will move on to assign 7 to the sandwich variable and then set both the 
peanut_butter and sandwich variables to each other. We can check that they 
both return the same memory location. 

• We'll then set sandwich to 10; this changes the value (and memory location) 
of the sandwich variable only, and nothing changes for the peanut_butter 
variable. 

Let's see how to implement this in Python: 

#Variable 1: peanut_butter
peanut_butter = 6
print("The memory location of variable peanut_butter is: 
  ",id(peanut_butter))

#Variable 2: sandwich
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sandwich = 6
print("The memory location of variable sandwich is: 
  ",id(sandwich))

print(" We can see that the memory location of both the 
  variables is the same because they were assigned the same 
    value")

#Setting value of sandwich variable to a new number
sandwich = 7

#Setting both the variables equal to each other:
peanut_butter = sandwich
print("After setting the values of both variables equal to each 
  other, we have: ")

print("The value of variable sandwich is now set to: 
  ",sandwich)
print("The value of variable peanut_butter is now set to: 
  ",peanut_butter)

print("The value of  sandwich variable was changed to 10, let's 
  see whether it affects the value of peanut_butter")
#Setting value of sandwich variable to a new number
sandwich = 10

print("The value of variable peanut_butter: " ,peanut_butter)
print("The value of peanut_butter did NOT change even though we 
  changed the value of sandwich")
print("The memory location of variable peanut_butter is: 
  ",id(peanut_butter))

The output of the code is as follows:

The memory location of variable peanut_butter is:  2077386960
The memory location of variable sandwich is:  2077386960
 We can see that the memory location of both the variables is 
  the same because they were assigned the same value
After setting the values of both variables equal to each other, 
we have: 
The value of variable sandwich is now set to:  7
The value of variable peanut_butter is now set to:  7
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The value of variable was changed to 10, let's see whether it 
 affects the value of peanut_butter
The value of variable peanut_butter:  7
The value of peanut_butter did NOT change even though we 
 changed the value of sandwich
The memory location of variable peanut_butter is:  2077386976

Now that we know how hexadecimal numbers are used to define memory locations,  
let's move on to see some more examples of how they are useful. 

Example – Displaying error messages
Hexadecimal numbers represent the memory location of errors, making it easier for the 
user to find and fix them. A binary representation, which would be the most natural 
representation due to the way a CPU works, would include four times as many digits, 
which would be difficult for a human to read and interpret.

Example – Media Access Control (MAC) addresses
MAC addresses are unique identifiers assigned to the Network Interface Card (NIC) of 
any computer. An NIC is required in order to connect to other computers in a network.  
It is useful for uniquely identifying a computer among other computers. The format of  
a MAC address is either AA:AA:AA:BB:BB:BB or AAAA-AABB-BBBB:

Figure 3.16 – A MAC address

We can easily write some Python code to find the MAC address of the device on which  
it is running by writing the following code in the terminal:

import uuid

# address using uuid and getnode() function
# making use of hexadecimal number system
print (hex(uuid.getnode()))
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It has the following output:

0xf40669da5f06

Now that we know how to find the MAC address of our computers, let's move on to see 
how the hexadecimal number system can be used to define colors. 

Example – Defining colors on the web
The primary colors – red (R), green (G), and blue (B) – are represented by two 
hexadecimal digits each. This can be written as #RRGGBB. Primary colors cannot be 
created by mixing other colors. 

The values of red, green, and blue can be set between 0 and 255 to generate other colors. 
Figure 3.17 lists all the commonly used colors: 

Figure 3.17 – For each RGB value, we have written the value in decimal and the two-digit  
hex number in parentheses in columns 2-4



64     Computing with Base-n Numbers

The advantages of hexadecimal number system: 

• It's a concise number system, so we can store more information by using less 
memory space. 

• It is more human-friendly because it allows the grouping of binary numbers.

In this section, we learned about hexadecimal numbers and some of their applications, 
which included defining locations in computer memory, MAC addresses for devices, 
displaying error messages, and defining colors on a web page. 

Summary 
In this chapter, we learned about numbers in different bases (decimal, binary, 
hexadecimal) and how we can convert between bases. Binary numbers are a base-2 
number system, whereas decimal numbers are base-10 and hexadecimal numbers are 
base-16, respectively. We also learned about one very crucial application of the binary 
number system – Boolean algebra and Boolean operators. 

In the next chapter, we will be learning about combinatorics, which includes the study of 
permutations and combinations that will enable you to calculate the amount of memory 
required to store certain kinds of data. In addition, we will learn about hashing and the 
efficacy of brute force algorithms. 
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Using SciPy
This chapter is about counting (or combinatorics), which seems simple, but rapidly gains 
complexity when counting the number of ways to combine, order, or select various finite 
sets. This includes the study of permutations and combinations, which can be applied to 
determining the memory required to store various types of data. 

We will apply these ideas to measure the efficacy of brute-force algorithms applied to 
cryptography and the traveling salesman problem. 

In this chapter, we will cover the following topics:

• The fundamental counting rule

• Counting permutations and combinations of objects

• Applications to memory allocation

• Efficacy of brute-force algorithms

By the end of the chapter, you will be able to count various mathematical structures, 
distinguish between combinations and permutations, and be able to count them. You will 
also be able to apply these ideas to practical problems in memory allocation and measure 
the effectiveness of brute-force algorithms in code-breaking in cryptology, the traveling 
salesman problem, and beyond. The SciPy Python library as well as the standard Python 
math library will be used in this chapter.
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Important Note
Please navigate to the graphic bundle link to refer to the color images for  
this chapter.

The fundamental counting rule
This section is devoted to counting the number of possible ways to select several objects, 
each from a set of distinct elements. We will first focus on the case of just two sets before 
extending it to an arbitrary number of sets.

Definition – the Cartesian product
The set of ordered pairs A × B = {(a, b) : a ∈  A, b ∈  B}, with component a as an element 
from set A and the second component b from set B, is called the Cartesian product of sets 
A and B:

Figure 4.1 – If A = {a1, a2} and B = {b1, b2}, then A × B consists of the ordered pairs in this table

This chapter is all about counting the number of elements in sets. Recall from Chapter 1, 
Key Concepts, Notation, Set Theory, Relations, and Functions that the cardinality of a set  
is the number of elements in the set. Cartesian products are interesting things to  
count because we can count the number of ways of choosing one element from set A  
and another element from set B, so our first counting rule will find the cardinality of  
a Cartesian product.

Theorem – the cardinality of Cartesian products of 
finite sets
If A and B are finite sets, then |A × B| = |A| |B|.

Proof: Assume |A| = n. If B is the empty set, then |A × B| = 0. If A = {a1, …, an} and  
B = {b1}, then the elements of A × B are clearly (a1, b1), ..., (an, b1) so that |A × B| = |A| |B| = 
n  1 = n.

Suppose B = {b1, ..., b
m}, then we can break A × B down into the disjoint A × (B – {b1}) and 

A × {b1} sets, so we have the following from the previous step:

|𝐴𝐴 × 𝐵𝐵| = |𝐴𝐴 × (𝐵𝐵 − {𝑏𝑏1})| + |𝐴𝐴 × {𝑏𝑏1}| = |𝐴𝐴 × (𝐵𝐵 − {𝑏𝑏1})| + 𝑛𝑛 



The fundamental counting rule     67

Repeat this process, deleting one element from B until B runs out of elements (m times) 
and we eventually have the following:

|𝐴𝐴 × 𝐵𝐵| = |𝐴𝐴 ×  ∅| + |𝐴𝐴| + |𝐴𝐴| +⋯+ |𝐴𝐴|⏟            
𝑛𝑛 times

= 0 + 𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛 = |𝐴𝐴| · |𝐵𝐵| 

Practically, this result says that if we must choose a pair of elements consisting of one item 
from a set of m distinct elements and one from another set of n distinct elements, there 
are mn unique ways to do it. This idea easily extends to situations where there are more 
than just two sets. First, we extend the definition of the Cartesian product to more sets, 
which leads to the fundamental counting rule, the key to most of the remainder of our 
upcoming counting rules.

Definition – the Cartesian product (for n sets)
The set A1 × A2 × … × An = {(a1, a2, …, an) : a1 ∈  A1, a2 ∈  A2, …, an ∈  An} of ordered n tuples, 
where the ith component, ai, comes from set Ai for each instance of i = 1, 2, …, n.

Theorem – the fundamental counting rule
If A1, A2, …, An are finite sets, then |A1 × A2 × … × An| = |A1| . |A2|…|An|.

Proof: Assume |Ai| = mi < ∞ for each instance of i = 1, …, n. Apply the previous result 
for calculating a Cartesian product to A1 × A2 to find |A1 × A2| = |A1| . |A2| = m1m2. Then, 
choose one ordered pair from A1 × A2 and pair it with one element from A3. Then, the 
same result implies the following:

|(𝐴𝐴1 × 𝐴𝐴2) × 𝐴𝐴3| =  |𝐴𝐴1 × 𝐴𝐴2| · |𝐴𝐴3| =  |𝐴𝐴1| · |𝐴𝐴2| · |𝐴𝐴3| =  𝑚𝑚1𝑚𝑚2𝑚𝑚3 

This is the number of elements in A1 × A2 × A3. Continuing this process, we can include 
one more set, Ai, repeatedly until we get to An and we will have the result of the theorem.

In other words, if we need to select n elements, each from sets of m1, m2, …, mn distinct 
elements, there are m1m2…mn unique ways to do it.

Example – bytes
A byte is a unit of digital information typically consisting of eight bits, which are binary 
digits: ones and zeroes. We can use the fundamental counting rule to calculate the number 
of possible bytes that could be constructed. Each of the eight digits may be filled with an 
element of the set {0,1}, which has a cardinality of 2; so, we have the following:

|{all possible bytes}| = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 28 = 256 
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Therefore, if we suppose each possible byte represents some particular information, each 
one can carry one of 256 possible pieces of information.

Another option to determine the figure in the preceding example would be to list all 
the possible bytes and count them: 00000000, 00000001, 00000010, 00000011, ...; but as 
you can already tell, this would take quite some time! The takeaway from this remark is 
that while there are typically "brute-force" approaches to count complex things, using 
combinatorial rules, including the preceding one, is far more practical.

Example – colors on computers
In many computing applications, colors are created by mixing the colors red, green,  
and blue (RGB). In particular, you can specify the intensity of each color in a mixture.  
A common approach used in HTML and CSS, among other technologies, is to encode the 
intensity of each color as 1 byte of information.

Let's count how many unique colors this approach can create. Since we have 3 bytes, and 
each byte can take one of 256 forms, we can see that there are 256  256  256 = 16,777,216 
unique combinations of intensities of red, green, and blue, and so this approach can create 
over 16 million colors!

As we have seen, the fundamental counting rule directly allows us to compute some 
quantities of interest, such as the information that can be communicated with bytes and 
the number of colors that certain web languages can display. Beyond that, it is a key result 
that will lead to formulas for computing other sorts of groupings of objects: permutations 
and combinations.

Counting permutations and combinations  
of objects
This section is dedicated to counting orderings, or permutations, of objects in a set, as well 
as subsets of specified cardinalities, or combinations, of elements of some wider set.

Definition – permutation
A permutation is a rearrangement of the elements of a set.

Example – permutations of a simple set
For the set {1, 2, 3}, the set of all permutations is {123, 132, 213, 231, 312, 321}, so there 
are six permutations of this set. Certainly, there is nothing special about elements 1, 2, and 
3. Any set of three distinct elements would have the same number of permutations.
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As you might suspect, however, listing permutations becomes more and more 
cumbersome for larger sets, so we need a rule for counting them more efficiently.

Theorem – permutations of a set
The number of permutations of a set of size n is n! = n(n – 1)(n – 2)…(2)(1), which is 
pronounced n factorial.

Proof: In the first position of the permutation set, there may be any of the n objects. If 
we have selected one, that leaves n – 1 remaining objects for the second position, and so 
on. According to the fundamental counting rule, there are n(n – 1)(n – 2)…(2)(1) = n! 
possible permutations. 

Notice that in the previous example, this theorem tells us the number of permutations of  
A = {1, 2, 3} is |A|! = 3! = 3·2·1 = 6, the same result we found from listing all the 
permutations.

Important Note
Note that 0! is defined to be 1.

Example – playlists
Suppose we have a playlist of 20 songs that we will play in a random order (without 
repeating). According to the previous theorem, the number of possible orders,  
or permutations, is 20! ≈ 2.43 × 1018, a shockingly high number!

Growth of factorials
Notice in the following table that factorials grow extremely quickly:

Figure 4.2 – A table of the first 10 factorials. As we see, a set of 10 elements  
has over 3 million permutations!
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The number of permutations of just 10 elements is over 3 million. By the time we reach 
20 elements, as in the previous example, the number of permutations is 20! ≈ 2.43 × 1018, 
over 2 quintillion!

Many computational tools, such as calculators and programming languages, cannot (by 
default) calculate permutations if the number of elements gets too high, but the factorial 
function from the math module in Python (math) does not experience much trouble, as 
it can calculate large factorials efficiently using some mathematical tricks, as seen in the 
following code:

import math
print(math.factorial(20))
print(math.factorial(100))

The resulting output is as follows:

2432902008176640000

933262154439441526816992388562667004907159682643816214685929638
952175999932299156089414639761565182862536979208272237582511852
10916864000000000000000000000000

Important Note
The math module will be used frequently in this book. Check out the official 
documentation for the math module at https://docs.python.
org/3/library/math.html for more details.

Sometimes, we may wish to count a slightly different type of permutation; for example, in 
our example with playlists, suppose we want to randomly play only half the playlist of 20 
songs. Then, how many distinct permutations of a subset of 10 of the 20 songs are there? 
The next result allows us how to easily calculate that number.

Theorem – k-permutations of a set
The number of permutations of k out of n distinct elements from a set, or k-permutations, 
is as follows:

𝑃𝑃𝑘𝑘 =
𝑛𝑛!

(𝑛𝑛 − 𝑘𝑘)! 

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html
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Proof: If there are k positions to fill from n options, the first position may be filled by any 
of the n elements, the second may be filled by any of the remaining n – 1 elements, and 
so on down to the last position being filled by any of the remaining n – k + 1 elements. 
So, according to the fundamental counting rule, we have n(n – 1)(n – 2)···(n – k + 1) 
possibilities, but this can be manipulated as follows:

This gives a fraction with n! as the numerator and (n – k)! as the denominator, or  
𝑛𝑛!

(𝑛𝑛 − 𝑘𝑘)! 

This theorem works for all non-negative integers, k ≤ n, so we see that the previous 
theorem is just a special case of this more general theorem where k = n.

Returning to our playlist, then, the number of 10-permutations of the 20-song list can be 
computed with Python as follows:

import math
print(math.factorial(20)/math.factorial(20-10))

This outputs the following:

670442572800.0

Now, we can count the number of permutations or orderings of sets or their subsets. 
Another sort of grouping of elements is a combination, which we will discuss next.

Definition – combination
A combination is a selection of some elements from a set.

The main difference between a combination and a permutation of some k out of 
n elements is that different orderings of the same k elements represent multiple 
permutations, but only one combination.

Example – combinations versus permutation for  
a simple set
Consider the set A = {1, 2, 3}. The two-element permutations of A are {12, 21, 13, 31, 23, 
32}, but the set of two-element combinations of A are {12, 13, 23}. Since the order is not 
important for combinations, we have fewer of them. The next result shows just how many 
we have. 

𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2)…(𝑛𝑛 − 𝑘𝑘 + 1) = 𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2)… (𝑛𝑛 − 𝑘𝑘 + 1).
(𝑛𝑛 − 1)(𝑛𝑛 − 𝑘𝑘 − 1)… (2)(2)
(𝑛𝑛 − 𝑘𝑘)(𝑛𝑛 − 𝑘𝑘 − 1)…(2)(1) 
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Theorem – combinations of a set
The number of combinations of k out of n elements of a set, or k-combinations, is

𝐶𝐶𝑘𝑘 = (𝑛𝑛𝑘𝑘) =
𝑛𝑛!

𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)! .

Proof: The number of permutations of k out of n elements is nPk by the theorem on 
k-permutations. For each fixed k elements, there are k! different permutations by the first 
theorem on permutations, so we simply need to divide nPk by k! to find the number of 
combinations of k out of n elements, since the order of the elements does not matter in 
combinations. So, we have the following:

𝑃𝑃𝑘𝑘
𝑘𝑘! =

𝑛𝑛!
𝑘𝑘! (𝑛𝑛 − 𝑘𝑘)! = (𝑛𝑛𝑘𝑘) 

Binomial coefficients
(𝑛𝑛𝑘𝑘)  is called a binomial coefficient because of the binomial theorem from algebra, which 

gives the expansion of a binomial raised to the power of a non-negative integer n, as 
follows:

(𝑥𝑥 + 𝑦𝑦)𝑛𝑛 = ∑ (𝑛𝑛
𝑘𝑘)

𝑛𝑛

𝑘𝑘=0
𝑥𝑥𝑘𝑘𝑦𝑦𝑛𝑛−𝑘𝑘 = (𝑛𝑛

0) 𝑥𝑥0𝑦𝑦𝑛𝑛 + (𝑛𝑛
0) 𝑥𝑥1𝑦𝑦𝑛𝑛−1 + ⋯ + (𝑛𝑛

𝑛𝑛) 𝑥𝑥𝑛𝑛𝑦𝑦0 

Example – teambuilding
Suppose there are 20 software engineers working in an office. Their supervisor will choose 
a team of four engineers to work on a new project. We would like to count the number of 
possible teams that could be selected. Note that the order in which the team members are 
selected is unimportant to counting the number of teams—for example, the team of Katie, 
Pranav, Sanjay, and Li is the same as the team of Pranav, Li, Sanjay, and Katie. Therefore, 
the correct structures we are counting are combinations rather than permutations.

Therefore, the number of possible teams is (204 ) , which would be cumbersome to calculate 

by hand, so we can use a tool such as Python. We could use the factorial function from 
before, along with the definition of binomial coefficients, but there is a highly optimized 
implementation in the SciPy package, specifically in its special functions, called binom:

# using the factorial function
import math
print(math.factorial(20) / math.factorial(4) / math.
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  factorial(20-4))

# import the special functions from sciPy
import scipy.special
print(scipy.special.binom(20,4))

The output is shown here:

4845
4845.0

Therefore, there are 4,845 distinct teams that could be chosen for the project. Note that 
both of the code examples work, but scipy.special.binom is preferable because it is 
optimized.

Important Note
You can find the official documentation for the popular SciPy library for 
Python at https://docs.scipy.org/doc/scipy/reference/.

Example – combinations of balls
Consider a box containing six red balls and five yellow balls and assume five balls are to be 
chosen randomly. Let's find the number of combinations where there are exactly three red 
balls in the five chosen.

First, we have to choose three out of the six red balls, so there are (
6
3) = 20  ways of doing 

that. Secondly, we must choose two of the five yellow balls, so there are (
5
2) = 10  ways of 

doing that. We need to choose one of the 20 ways of getting the correct number of red 
balls and one of the 10 ways of selecting the correct number of yellow balls, so according 
to the fundamental counting rule, there are 20  10 = 200 ways that both of these can 
occur.

As we see, to solve more complicated problems, several of the combinatorial rules we have 
established may be needed.

In the remainder of the chapter, we will discuss some practical applications of 
combinatorics in computer and data science.

https://docs.scipy.org/doc/scipy/reference/
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Applications to memory allocation
One area where combinatorics can come into play is in determining how much memory 
an algorithm needs to complete a certain task. It is frequently useful to know this before 
we run some code. In most programming languages, when arrays are created, they are 
given a static size that cannot be changed. Therefore, it is faster or more convenient to 
change an existing value in an array than to change the size of an array. 

So, developers often pre-allocate the memory by creating an array of the maximum 
size we will need for the whole course of the algorithm, either filled with 0s or empty, 
depending on the language. This is not a problem with small amounts of data, but 
when the program needs to process exponentially large amounts of data, this can be 
very wasteful. Understanding memory usage is also important to avoid certain negative 
consequences: we may use up so many resources on the device that it cannot complete  
its other tasks, it may crash, or it may begin reading and writing data to hard drives 
instead of the much faster RAM.

Example – pre-allocating memory
Suppose we wish to create a large list of 1,000,000 numbers. The simplest way is to just run 
a loop, adding one element at a time to the vector:

import time
number = 1000000

# Check the current time
startTime = time.time()

# Create an empty list
list = []

# Add items to the list one by one
for counter in range(number):
  list.append(counter)

# Display the run time
print(time.time() - startTime)

It returns the following:

0.584686279296875
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Therefore, this code runs in about 0.5847 seconds, which seems fast, but is not optimal.

Important Note
The Python time library allows you to measure the runtime of some code. 
The time.time() command checks the current time, so if you save this 
value at the beginning, you can measure the time elapsed by subtracting that 
from a new time.time() command at the end.

The runtime will depend on the computing device, so you may find a different 
amount of time than the preceding example.

Suppose we pre-allocate a list of length 1,000,000 with the following code before filling it in:

import time
number = 1000000

# Check the current time
startTime = time.time()

# Create a list of 1000000 zeros
list = [None]*number

# Add items to the list one by one
for counter in range(number):
  list[counter] = counter

# Display the run time
print(time.time() - startTime)

We get an output as follows:

0.44769930839538574

The runtime here is only 0.4477 seconds, a time saving of 23%. Here, we readily see the 
speed advantage of pre-allocation, at least for large lists in Python. Sure, saving 0.14 
seconds is inconsequential on a small scale, but if you use this method in an algorithm 
that will run thousands or millions of times in some software, it can make a huge 
difference.
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While each requires a loop of 1,000,000 iterations, Python must do more work in the 
first method as each iteration requires more operations to be done—according to the 
fundamental counting rule, each extra operation turns into 1 million more operations 
upon completing all million iterations—so it takes more time, even though the two 
approaches both accomplish the same goal. Furthermore, most languages are even less 
efficient than Python at repeated appending elements to lists.

It should be mentioned that while a list of size 1,000,000 may seem large, this not at all an 
uncommon size for the objects we may analyze. For example, a typical photo taken with  
a modern smartphone may include more than 10 million pixels, each of which would have 
three numbers associated with it (RGB value), so a list of 30 million numbers would be 
needed to represent a single picture file. As you might imagine, a video file may include 
thousands of pictures, leading to enormous list sizes. 

In the next section, we will learn about brute-force algorithms and go through some 
examples, such as the Caesar cipher and the traveling salesman problem. 

Efficacy of brute-force algorithms
A combination lock requires you to input three numbers from, say, 0 to 9 to open the  
lock. One approach to open it if you forget the password is to try (0, 0, 0), then (0, 0, 1),  
then (0, 0, 2), and so on. This method is guaranteed to succeed if we have enough patience  
to test all permutations of 0 through 9 for each of the three numbers. This is a brute-force  
algorithm: a trial-and-error approach to solving a problem where you simply guess the 
answer over and over until you get it right. Of course, this is very tedious for a combination 
lock, but brute-force approaches are actually sometimes practical, especially when using 
computers.

Example – Caesar cipher
Roman emperor and general Julius Caesar is said to have been one of the earliest users of 
encryption in the form of coded messages. Now called the Caesar cipher, his method was 
to write the message and then shift the alphabet by some specified number of letters. For 
example, he might choose to shift the alphabet by 4 letters. Then, A is replaced by E, B is 
replaced by F, and so on. When we reach V, it becomes Z. After that, we go back to the 
beginning so that W becomes an A, X becomes a B, and so on, as we see here:

Figure 4.3 – The plaintext characters and corresponding ciphertext characters
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One approach to breaking some encryption is brute force. If we know it was a Caesar 
cipher, then there are only 25 possible shifts, so we can just test them all until we find one 
that seems right. We will do this in the following code: 

# Intercepted message
codedMessage = 'nzohfu gur rarzl ng avtug'

# We will shift by 0, shift by 1, shift by 2, ... and print the 
  # results
for counter in range(26):
    # Start with no guess
    guessedMessage = ''
    
    # Loop through each letter in the coded message
    for x in codedMessage:
        
        # If x is not a space
        if x != ' ':
            
            # Shift the letter forward by counter
            if ord(x)+counter <= 122:
                x = chr(ord(x)+counter)
                
            # Subtract 26 if we go beyond z
            else:
                x = chr(ord(x)+counter-26)
                
        # Build a guess for the message one letter at a time
        guessedMessage = guessedMessage + x  

    # Print the counter (the shift) and the message
    print(counter, guessedMessage)

A few lines of the output are as follows:

10 xjyrpe qeb bkbjv xq kfdeq
11 ykzsqf rfc clckw yr lgefr
12 zlatrg sgd dmdlx zs mhfgs
13 ambush the enemy at night
14 bncvti uif fofnz bu ojhiu

We see that the cipher must have shifted the alphabet by 13, as we discover by inspecting 
each of the possible adjusted alphabets.
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Moreover, this example shows something about when brute-force algorithms are useful. 
For brute-force algorithms to thrive, there are two main requirements:

• The set of possible solutions, or solution space, is sufficiently small.

• It must be possible to determine the correct solution given output from each 
possible solution.

If we fail condition 1, the algorithm takes too long to run. In fact, the problem with such 
large solution spaces is that it would take days or even years to run a brute-force algorithm. 
In this example, however, there were only 26 possible answers. It is important to note that 
for each answer, we had to execute several operations, but the overall runtime is quite small 
on a modern computer. If we fail condition 2, we will not know whether we have found the 
right answer even if we have it. It's obvious here because most of the strings of text are not 
intelligible messages, so we can pick out Caesar's message right away.

In this section, we will focus on the first conditions because we can use combinatorics 
to count the sample space for various problems to evaluate the efficacy of brute-force 
algorithms.

Staying on the theme of cryptanalysis (the art and science of breaking codes), suppose  
we receive the following encrypted message:

toa bxfew grknm cks jxuyz kdar h lhvp akq

If we input this into the brute-force algorithm (try it!), you will see that none of the 
26 shifts makes an intelligible message, so the author has apparently used a different, 
possibly more sophisticated method to encrypt their message. None of the 26 alternative 
alphabets allowed by the Caesar cipher accurately model the encryption used. A wider 
class of encryption is a so-called simple substitution cipher wherein each letter in the true 
message (the plaintext) is replaced by another letter in the coded message (the ciphertext) 
but is not necessarily a Caesar cipher where the alphabet is just shifted. This leads to  
a problem that is more like a cryptogram that you might see in a newspaper or puzzle 
book. A valid brute-force algorithm would have to search a larger set of alternate 
alphabets and we would have to view the messages to determine whether they are 
intelligible. But how large is this set of alphabets? Clearly, we can note the following:

• A could be replaced by any of the 26 letters of the alphabet.

• B could be replaced by any of the 25 remaining letters.

• C could be replaced by any of the 24 remaining letters.
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A familiar trend emerges: the factorial. Indeed, any of these possible ciphertext alphabets 
are re-orderings or permutations of the normal alphabet, so there are 26! ≈ 4.03 . 1026,  
or 403 heptillion such alphabets.

Clearly, a brute-force algorithm that constructs the messages found by applying each 
possible alphabet in the solution space and inspecting them manually is not practical.  
If we could check 10 messages per second, it would take 1.2 quintillion years, or 10 million 
times the age of the universe! A fully computerized version at best may read and check 
with dictionaries to see whether the text forms words at a rate of several million per 
second, but this still requires a runtime of billions of years.

Although the brute-force approach of testing would almost certainly produce the right 
answer if completed, this is not enough for it to be practical. It has to be possible to 
complete it in a useful period of time. Even worse for brute force, this is not even  
a complex type of encryption—making up an alphabet by hand can be done in just  
a couple of minutes!

Example – the traveling salesman problem
Suppose a traveling salesman will drive around to visit N cities, including his home city,  
to try to sell his wares and then return home. He wants to minimize the distance he travels 
so that his fuel costs are as small as possible; so, the question of the Traveling Salesman 
Problem (TSP) is as follows:

Given the list of cities and the minimum distance between each two cities, in what order 
should the salesman visit each city and return home with a minimum travel distance?

The TSP is a classical problem in operations research, and we will study more advanced 
approaches to the problem in Chapter 9, Searching Data Structures and Finding Shortest 
Paths; but for now, let's see how this problem responds to a brute-force algorithm by 
thinking about what exactly must be done to solve it, and also consider the size of the data 
structures that should be stored.

First, if we have a list of N cities and the distances between two cities, how many distances 
will there be? To find the number of unique pairs of cities, we would need to consider 
every combination of 2 out of N cities. Note that we do not consider permutations 
because, for example, the distance from Chicago to Dallas is the same as the distance from 
Dallas to Chicago, so the order does not matter, and storing separate distances would be 
redundant. Thus, the number of distances we will have is as follows:

(𝑁𝑁2) =
𝑁𝑁!

(𝑁𝑁 − 2)! 2! =
𝑁𝑁(𝑁𝑁 − 1)

2  
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This allows us to know precisely how much memory the data will take, allowing 
pre-allocation of a data structure with space for (N(N – 1))/2 spaces.

Next, a brute-force way to solve the problem is to simply find the distance of each possible 
circuit the salesman could make through the cities and compare the distances; so how 
many such circuits are there? If the salesman starts in his hometown, he has N – 1 cities  
to choose from for the second city. After visiting the second city, he has N – 2 choices  
for his third city, and so on, until he runs out of cities, when he returns home. This is  
a permutation, so there are (N – 1)! possible circuits he could take.

There is a bit of a problem with this accounting. Suppose there are only five cities and he 
takes a circuit that we label as follows:

𝑎𝑎 → 𝑑𝑑 → 𝑒𝑒 → 𝑐𝑐 → 𝑓𝑓 → 𝑏𝑏 → 𝑎𝑎 

We have highlighted this in red in the following figure, showing the full set of links 
between the cities:

 

Figure 4.4 – The whole set of paths with the circuit we mentioned in red for a small TSP with N = 6

Another possible circuit is as follows:

𝑎𝑎 → 𝑏𝑏 → 𝑓𝑓 → 𝑐𝑐 → 𝑒𝑒 → 𝑑𝑑 → 𝑎𝑎 
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This is the same circuit but in the reverse order (simply reverse the arrows in the 
preceding figure). This circuit will require him to travel the exact same distance as the first 
circuit since it traverses all the same roads, just in the reverse order. Since the reverse of 
each circuit will be included in our calculation of (N – 1)! circuits, we can divide that by 2 
to cut the work that the brute-force algorithm must do in half, as we will need to test only 
the following:

(𝑁𝑁 − 1)!
2  

This is a substantial reduction in the time needed to carry out such a brute-force approach.

For a six-city problem, there are only (6)(5)/2 = 15 distances and only 5!/2 = 60 possible 
circuits the salesman could take (ignoring reverse versions of circuits).

However, even though this reduces the time by 50%, we saw with the previous cryptology 
problems that brute-force algorithms are only feasible for tiny problems, so reducing the 
computation by half is not enough to practically solve the TSP unless the number of cities, 
N, is very small. If N = 20, still a relatively small problem, we have the following number 
of possible non-redundant circuits:

19!
2 ≈ 6.08 × 1016 

This would be entirely infeasible to solve with brute force.

Summary
In this chapter, we primarily discussed how to count the cardinality, or size, of sets of 
different types. First, we looked at counting Cartesian products, where we take one 
element from each of a sequence of sets to create a new set. Counting the size of these 
comes down to the fundamental counting rule, which we used to count binary structures 
and the colors that can be displayed with HTML/CSS.

Second, we looked at permutations and combinations using factorials (for permutations) 
and binomial coefficients (for combinations), which we derived directly from the 
fundamental counting rule. For factorials, the key tool in Python is the factorial 
function in the math library and, for binomial coefficients, the binom function from the 
SciPy library.

Lastly, we took a look at just a few applications of combinatorics in computer science, 
including memory allocation, the (poor) speed of brute-force algorithms in a few 
examples in the area of cryptology, and for a classical optimization problem, the TSP.
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The tools from this chapter will be used repeatedly as we progress through the book. In 
particular, counting is important in computing probabilities in the next chapter, Chapter 
5, Elements of Discrete Probability. The so-called complexity analysis of algorithms will be 
covered more generally and more deeply in Chapter 7, Computational Requirements for 
Algorithms, and we will continue from the discussion of brute-force algorithms on to more 
effective approaches for various problems.



5
Elements of Discrete 

Probability
Probability is the study of randomness, chance, and uncertainty. We experience 
randomness all the time–from the weather to the stock market to the results of sporting 
events and elections. We can never predict these things with certainty, but we can make 
reliable statements about the likelihood (or probability) of events occurring through 
careful study of patterns in the uncertainty and variables that may affect it.

The type of probability that's most important to discrete mathematics and computer 
science is to do with, of course, discrete sets. In this chapter, after establishing how 
probability works in the general sense, we will present elements of combinatorial 
probability. This is important in situations where each resulting outcome of a random 
experiment is equally likely, so that the chance that the result is in a certain set of 
outcomes which depends on counting the size of the set. Then, we will look at conditional 
probability and Bayes' theorem, which allow us to update probabilities based on learning 
new information, which is quite an important idea in machine learning and other topics. 
We will then use this theory to consider Bayesian spam filters, which try to automatically 
identify which emails are legitimate and which are not. The key turns out to be Bayes' 
theorem, which takes in user input when it makes mistakes in classifying emails and 
updates its approach to improve over time.
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After that, we will discuss random variables, which take some random numerical values 
and analyze them by considering their average values through the idea of a mean of  
a random variable and how erratic they are via the idea of their variance. All of this 
will culminate in a look at Google's PageRank system for ranking search results, which 
revolutionized web searches in the late 1990s and early 2000s.

In this chapter, we will be covering the following topics:

• The basics of discrete probability

• Conditional probability and Bayes' theorem

• Bayesian spam filtering

• Random variables, means, and variance

• Google PageRank I

Important Note
Please navigate to the graphic bundle link to refer to the color images for  
this chapter.

The basics of discrete probability
As we have said, making predictions or finding probabilities requires careful analysis,  
so we need a mathematical framework for probability. It will all center around the idea of 
a random experiment.

Definition – random experiment
A random experiment is any process that has an uncertain outcome.

Simple examples of random experiments are tossing a coin or rolling a die, each of which 
has an uncertain outcome. These are easy to analyze, but some random experiments are 
much more difficult, such as predicting tomorrow's weather. Despite the complexity, 
experts can estimate the chance of each possible result of the random experiment using 
complex meteorological models, taking into account temperatures, humidity, and other 
atmospheric data.

Something each example has in common is that there is a random result for each 
experiment. A coin toss may result in heads or tails. We may roll a 1, 2, 3, 4, 5, or 6 on 
the die. The weather may be clear tomorrow, or it may rain or snow. These are called 
outcomes.
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Definitions – outcomes, events, and sample spaces
Let's look at what outcomes, events, and sample spaces are:

• Each possible result of a random experiment is an outcome.

• A set of outcomes is an event.

• A sample space S is the set of all possible outcomes of a random experiment.

Example – tossing coins
Consider a random experiment where we toss a coin. Let H represent the coin landing 
on heads and let T represent the coin landing on tails. The sample space of this random 
experiment is S = {H, T}.

The coin can land on heads or tails, each of which is a single outcome. Events are sets of 
outcomes, that is, subsets of S. All possible events would be , {H}, {T}, and {H, T}.

Example – tossing multiple coins
Instead of just one coin, consider a random experiment where we toss three coins. In this 
case, the outcome of the experiment is a sequence of three outcomes from several coin 
tosses. Therefore, the sample space S consists of the following:

Figure 5.1

The list of all possible events for this random experiment would be quite long. Keep in 
mind that events are simply any subsets of the 8 outcomes in the sample space shown 
previously. This makes for a total number of events given here:

(80) + (81) + (82) + (83) + (84) + (85) + (86) + (87) + (88) = 256 

We know this from Chapter 4, Combinatorics Using SciPy, which was on combinatorics for 
counting combinations.

As you may have noticed, randomly flipping a coin is equivalent to randomly selecting  
a binary digit—often 0 represents tails and 1 represents heads, as we will see in some more 
advanced examples later—which feeds nicely into computer science applications due to 
the ubiquity of binary. 



86     Elements of Discrete Probability

With our coverage of the ideas of random experiments and their sample spaces, we have 
established all the things that could occur from some random process, but not the core 
quantity we seek: the chance of each outcome occurring. As you might suspect, each 
random experiment has its own way of assigning these values to events; a function takes 
events as inputs and returns probabilities. Such a function is called a probability measure.

Definition – probability measure
A probability measure is a function P: {Events} → [0,1] mapping events to numbers 
between 0 and 1 (probabilities), where P(S) = 1 and the countable additivity holds.

For pairwise-disjoint events A1, A2, …, we have P(A1  A2  …) = P(A1) + P(A2) +….

Important Note
This means, for every pair of events An and Am from the sequence, An  Am =  
if m ≠ n. In other words, the events are non-overlapping events; they share no 
outcomes in common.

Let's unpack this definition a little.

The codomain of any probability measure P is [0,1]. The outputs are probabilities,  
or chances of events occurring, so they should not be more than 100% or less than 0%. 
The higher this output, the more likely the event is to occur:

Important Note
If an event has a probability of 0, it is not true in general that an event cannot 
occur, but this is true in the context of discrete probability for finite sets. 
Likewise, a probability of 1 does not imply an event must occur in general.

1. The probability of the whole sample space P(S) is 1. The sample space consists of all 
the possible outcomes, so the probability that one of them occurs must be 1.

2. The countable additivity property says that if some events (sets of outcomes) are 
disjointed (do not share any outcomes), then we can calculate the probability that 
one event of the group occurs as the sum of their individual probabilities.

From these definitions, we can easily arrive at some elementary properties of probabilities.
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Theorem – elementary properties of probability
Let A and B be events, then P(A  B) = P(A) + P(B) if A and B are disjointed:

1. P( ) = 0.

2. P(Ac) = 1 – P(A)

Proof
The preceding theorem can be proven as follows.

Since A and B are disjointed, A  B is just a simpler version of the set A1  A2  … from the 
countable additivity condition of the definition of a probability measure, so the same 
result applies—namely, P(A  B) = P(A) + P(B):

1. Since S = S   and these sets are disjointed, the previous result and the fact that 
P(S) = 1 gives us P(S) = P(S) + P( ), or 1 = 1 + P( ), so P( ) = 0.

2. Notice S is a union of the two disjoint sets, A and Ac; by the previous result,  
P(S) = P(A  Ac) = P(A) + P(B). Then, we have 1 = P(A) + P(Ac), or 1 – P(A) = P(Ac).

All of these properties are intuitive results:

• The first property says the probability that event A or event B happens is the sum of 
the probabilities when they share no outcomes.

• The second property says the probability that there is no outcome is 0—by 
definition, the random experiment has some outcome, although it is uncertain.

• The third property says the probability that event A does not occur is 1 minus the 
probability that it does occur. As an obvious example of the third property, if there 
is a 40% chance that it will rain tomorrow, there must be a 60% chance that it will 
not rain.

Example – sports
The soccer teams Real Madrid CF and FC Barcelona will be competing in an upcoming 
match. A sports analyst has forecast that Madrid has a 40% chance of winning, Barcelona 
has a 50% chance of winning, and that otherwise a draw will occur. So, then, what is the 
probability that a draw will occur?

The first step in many probability problems is to introduce some notation. Let 
B = {FC Barcelona wins}, M = {Real Madrid CF wins}, and D = {a draw occurs}, whose 
union makes up the sample space S.
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What is the probability that a draw will occur? Notice that D = (B  M)c; that is, a draw is 
the complement of Barcelona or Madrid winning the match. So, we have this:

P(T) = P(B  M)c = 1 – P(B  M)

by property 3 above. Next, B and M are disjoint events since both teams cannot win, so 
property 1 implies this:

P(B  M) = P(B) + P(M)= 0.5 + 0.4 = 0.9,

This means the following:

P(T) = 1 - 0.9 = 0.1,

So, there is a 10% chance that there will be a draw, assuming the predictions of the analyst 
are accurate.

Of course, this example is rather simple and could be solved more informally quite quickly 
using simple intuition, but constructing some suitable notation and referring back to the 
specific properties of probabilities becomes more and more essential as the complexity of 
our problems increases.

The next two theorems are fundamental properties of probability that are necessary for 
some of the more complex results we will consider later.

Theorem – Monotonicity
If A  B,  then P(A) ≤ P(B).

Proof
Notice that B = A  (B – A) (the blue portion plus the orange portion in the figure), which 
are clearly disjoint sets:

Figure 5.2
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Then, the previous theorem tells us that P(B) = P(A) + P(B – A) ≥ P(A), since P(B - A)  
is a probability and, therefore, cannot be negative.

In other words, the property of monotonicity simply means that if we start with some 
discrete event A and it is possible to add some outcomes to it to create another discrete 
event B, the probability of event B is the same (if all the extra outcomes have zero 
probability) or will increase (if the outcomes have positive probability).

Some previous theorems show us how to calculate the probability of a union of disjoint 
events A  B, but what if A and B share some outcomes? The Principle of Inclusion-
Exclusion provides a path to calculating these types of probabilities.

Theorem – Principle of Inclusion-Exclusion
For two events A and B, P(A  B) = P(A) + P(B) – P(A  B).

Proof
Notice from the diagram that A  B consists of three disjoint parts: the orange, blue, and 
yellow subsets:

Figure 5.3

Now, P(A) is the sum of the probabilities of the orange and blue parts while P(B) is the 
sum of the probabilities of the yellow and blue parts. If we were to add these all together, 
we would add the probability of the blue part, A  B, twice rather than just once. So,  
if we subtract one back away, we get P(A  B) = P(A) + P(B) - P(A  B). 

This result gives us a new capability. It allows us to calculate the probability of a union of 
events, even if the events are not disjoint, with a simple formula. 
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Definition – Laplacian probability
A Laplacian random experiment is one where every outcome has the same probability.

This verbal description seems rather simple, but when combined with the properties of 
probability measures, it actually contains much that is instructive.

Theorem – calculating Laplacian probabilities
Consider a Laplacian random experiment:

1. The sample space is finite, |S| = |{s1, s2, …, sn}| = n < ∞.

The probability of each outcome is 1𝑛𝑛 .

The probability of an event E  S is |𝐸𝐸||𝑆𝑆|  .

Proof
We will prove the three claims in order as follows:

1. Let the sample space be a countable (but possibly infinite) set, S = {s1, s2, …}. Since 
the experiment is Laplacian, the probability of each outcome, P({sj}) = c for some 
number c for every j = 1, 2,…, then P(S) = c + c + … = ∞, but this must be 1 if P is 
a probability measure, which contradicts the assumption that S may be countably 
infinite, so S must be finite.

2. By the previous result, S = {s1, s2, …, sn} for some finite number n. So, we have this:

1 = 𝑃𝑃(𝑆𝑆) = 𝑃𝑃({𝑠𝑠1}) +⋯+𝑃𝑃({𝑠𝑠𝑛𝑛}) = 𝑛𝑛𝑃𝑃({𝑠𝑠𝑗𝑗}) 
 

 
1
𝑛𝑛 = 𝑃𝑃({𝑠𝑠𝑗𝑗}), 

This is equivalent to 1/|S|.

3. Let 𝐸𝐸 = {𝑠𝑠𝑖𝑖1,… , 𝑠𝑠𝑖𝑖𝑘𝑘} ⊆ S  where k ≤ n. Then, we have the following:

𝑃𝑃(𝐸𝐸) = 𝑃𝑃({𝑠𝑠𝑖𝑖1,⋯ , 𝑠𝑠𝑖𝑖𝑘𝑘}) = 𝑃𝑃({𝑠𝑠𝑖𝑖1}) +⋯+𝑃𝑃({𝑠𝑠𝑖𝑖𝑘𝑘}) = 𝑘𝑘𝑃𝑃({𝑠𝑠𝑗𝑗}) =
𝑘𝑘
𝑛𝑛 =

|𝐸𝐸|
|𝑆𝑆|. 
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Example – tossing multiple coins
From a previous example, the sample space for tossing three coins is the following:

Figure 5.4

Now, clearly, each of these is equally likely to occur (assuming the coin is fair), so it is  
a Laplacian random experiment. Then, we see that the probability of each sequence of 
coin results is 1/8. With this fact, we can calculate some other probabilities:

𝑃𝑃({0 heads}) = 𝑃𝑃({𝑇𝑇𝑇𝑇𝑇𝑇}) = 1
8 

 
 

𝑃𝑃({1 heads}) = 𝑃𝑃({𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑇𝑇}) = 3
8 

 

 

𝑃𝑃({2 heads}) = 𝑃𝑃({𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇𝑇𝑇}) = 3
8 

 

 

𝑃𝑃({3 heads}) = 𝑃𝑃({𝐻𝐻𝐻𝐻𝐻𝐻}) = 1
8 

The previous example was pretty simple because we could easily list the whole sample 
space and count the sizes of the events, but calculating probabilities for Laplacian events 
with much larger sample spaces requires us to use the combinatorial properties we learned 
about in the previous chapter.

Definition – independent events
Events A and B are independent if P(A  B) = P(A)P(B).

Practically speaking, events A and B do not affect one another. For example, tossing heads 
on one coin is independent of tossing tails on the next coin.

Example – tossing many coins
Suppose we toss 50 fair coins. By the fundamental counting rule, the sample size here 
would be |S| = 250 = 1,125,899,906,842,624, since each sequence of heads and tails of the 
50 coins has 50 parts, each with two possible results.
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Of course, the sample size is too large to list it quickly, but we can still calculate 
probabilities. Suppose we want to know the probability that we get 25 heads—again, 
writing down all the events where this occurs is impractical, but we can view the set of 
sequences where there are exactly 25 heads as the number of combinations of 50 elements 
where 25 are heads; so, we have this:

𝐸𝐸25 = |{25 heads}| = (50
25) = 126,410,606,437,752 

That implies the following:

P(𝐸𝐸25) =
|𝐸𝐸25|
|𝑆𝑆| = 126,410,606,437,752

1,125,899,906,842,624 ≈ 0.1123 .

Calculating one of these by hand is easy, but calculating the probabilities of E1, E2, …, E50 
is pretty slow by hand, so let's use Python to compute the binomial coefficients for each 
index 1, 2, …, 50 in a loop via SciPy's binom function and print out the probabilities of 
each possible number of heads:

# Import packages with the functions we need
import scipy.special
import matplotlib.pyplot as plt

probabilities = []

for n in range(51):
    # Calculate probability of n heads
    probability = scipy.special.binom(50, n) / (2 ** 50)

    # Convert to a string with 6 decimal places
    probString = "{:.6f}".format(probability)

    # Print probability
    print('Probability of ' + str(n) + ' heads: ' + probString)

    # Add probability to list
    probabilities.append(probability)

# Plot the probabilites
plt.plot(range(51), probabilities, '-o')
plt.axis([0, 50, 0, 0.15])
plt.show()
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This is the (truncated) output:

Probability of 22 heads: 0.078826
Probability of 23 heads: 0.095962
Probability of 24 heads: 0.107957
Probability of 25 heads: 0.112275
Probability of 26 heads: 0.107957

Note that P({25 heads}) ≈ 0.1123, as we just found. The code also generates a plot with the 
last three lines of code, as we see here:

Figure 5.5

Conditional probability and Bayes' theorem
In everyday life, our knowledge of the past informs our predictions about the future. For 
example, if the team with the best record in a basketball league were about to play against 
the team with the worst record, we would likely estimate the chance of the first team 
winning the game to be higher than if we did not know that fact.

This same idea in the context of this chapter would be to calculate the probability of 
an event occurring after learning that another event has occurred. This is a conditional 
probability and it applies in situations where we learn information over time, which 
influences our evaluations of probabilities for subsequent events, which is important to 
machine learning, artificial intelligence, and many other fields.
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Definition – conditional probability
For two events A and B where P(B) > 0, the conditional probability of A given B is as 
follows:

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵)  

This is the proportion of the time A occurs given the knowledge that B also occurs.

Example – temperatures and precipitation
Suppose we have gathered data on high temperatures and whether or not it rained in 
Melbourne, FL, on May 11 for each year from 1977 to 2018 and have found the following 
data on high temperatures and the frequency of rain within each temperature category:

Figure 5.6

We assume the relationship between precipitation and temperature is not significantly 
changing over time. Suppose a temperature sensor in a particular location is not working, 
but we are able to detect that it rained—based on this, what is the probability that the 
temperature is in each range?

Say B = {it rains} and T let be the temperature:

𝑃𝑃(51 ≤ 𝑇𝑇 ≤ 60|𝐵𝐵) = 𝑃𝑃({51 ≤ 𝑇𝑇 ≤ 60} ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

1
50
25
50

= 1
25 
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Similarly, we end up with this:

𝑃𝑃(61 ≤ 𝑇𝑇 ≤ 70|𝐵𝐵) = 𝑃𝑃({61 ≤ 𝑇𝑇 ≤ 70} ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

5
50
25
50

= 5
25 

 

𝑃𝑃(71 ≤ 𝑇𝑇 ≤ 80|𝐵𝐵) = 𝑃𝑃({71 ≤ 𝑇𝑇 ≤ 80} ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

10
50
25
50

= 10
25 

 

𝑃𝑃(81 ≤ 𝑇𝑇 ≤ 90|𝐵𝐵) = 𝑃𝑃({81 ≤ 𝑇𝑇 ≤ 90} ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

8
50
25
50

= 8
25 

 

𝑃𝑃(91 ≤ 𝑇𝑇 ≤ 100|𝐵𝐵) = 𝑃𝑃({91 ≤ 𝑇𝑇 ≤ 100} ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵) =

1
50
25
50

= 1
25 

While our faulty temperature sensor makes finding the high temperature impossible, the 
preceding calculation gives us a probability that the temperature is in each range given the 
fact that it rained—and a pretty high probability, 0.72, that the temperature is between 71 
and 90.

Next, we will establish a few more useful results about probability and illustrate how they 
can be applied with some examples.

Theorem – multiplication rules
If A and B are events, then the following statements are true:

1. If P(B) > 0, then P(A  B) = P(B)P(A|B).

2. If P(A) > 0, then P(A  B) = P(A)P(B|A).  

Proof

For claim (1), by definition of conditional probability, ℙ(𝐴𝐴|𝐵𝐵) =
ℙ(𝐴𝐴 ∩ 𝐵𝐵)
ℙ(𝐵𝐵)  . Multiplying both 

sides by P(B) gives P(B)P(A|B) = P(A  B). The result for the second claim follows by the 
same argument if we interchange the roles of events A and B. 
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Note that we previously gave a simpler formula to compute P(A  B) if events A and B are 
independent, that is, by simply multiplying them, but the formula from this theorem 
works in any case and, therefore, gives us the capability of calculating some new sorts of 
probabilities.

Theorem – the Law of Total Probability
Let A1, A2, … be events that partition the sample space S. Let B be an event:

P(𝐵𝐵) = ∑P(𝐴𝐴𝑛𝑛 ∩ 𝐵𝐵)
∞

𝑛𝑛=1
= ∑P(𝐵𝐵|𝐴𝐴𝑛𝑛)P(𝐴𝐴𝑛𝑛)

∞

𝑛𝑛=1
. 

Proof
Since S is broken into disjoint sets A1, A2, … and B is a subset of S, disjoint parts of B are in 
A1, A2, … as well, and B = (A1  B)  (A2  B)  …. By countable additivity, P(B) is the sum 
of their probabilities. The rightmost part of the equation result uses the multiplication rule 
to rewrite each P(An  B) as P(B | An)P(An). 

The Law of Total Probability is very valuable because it can give us the probabilities of 
some event B given its probability conditioned on a sequence of other events.

That is, Ai  Aj =  for all i ≠ j and ⋃𝐴𝐴𝑖𝑖
∞

𝑖𝑖=1
= 𝐴𝐴1 ∪ 𝐴𝐴2 ∪⋯ = 𝑆𝑆 .

Theorem – Bayes' theorem
Let A and B be events with positive probabilities (that is, P(A) > 0 and P(B) > 0):

𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐴𝐴|𝐵𝐵) =  𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵|𝐴𝐴) 

Equally, the following applies:

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵) . 
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Proof
Equating the two results of the previous theorem and dividing each side by P(B),  
we get this:

𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) 
 

𝑃𝑃(𝐵𝐵)𝑃𝑃(𝐴𝐴|𝐵𝐵) =  𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵|𝐴𝐴) 
 

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵) . 

The proof of Bayes' theorem is extremely simple from the definition of conditional 
probability, but it is nevertheless one of the most important results in all of probability 
theory, especially in applications where we gain information related to random 
experiments over time that we want to use to update our evaluation of probabilities, such 
as continuous video feeds in computer vision, stock prices over time, and more.

Bayesian spam filtering
Suppose we have a filter that flags emails that it identifies as spam. Consider the events 
F = {e-mail flagged as spam} and T = {e-mail is spam}. If you have ever used a spam filter, 
you know that this is imperfect, so these sets do not coincide. Sometimes legitimate 
messages are caught by a spam filter and sometimes spam is undetected by the filter.

Suppose the developers of the spam filter did some extensive testing on a huge sample of 
emails and found several results:

• The probability that spam emails will be caught by the filter (true positives) is 0.95, 
or P(F|T) = 0.95.

• The probability that legitimate e-mails are not caught by the filter (true negatives) is 
0.98, so P(Fc|Tc) = 0.98.

• The probability that an email from the selected sample is spam is 0.1, or P(T) = 0.1.

Suppose an email is caught by the filter—what is the probability that it is actually spam? In 
other words, what is P(T|F)? By Bayes' theorem, it would be this:

𝑃𝑃(𝑇𝑇|𝐹𝐹) = 𝑃𝑃(𝑇𝑇)𝑃𝑃(𝐹𝐹|𝑇𝑇)
𝑃𝑃(𝐹𝐹)  
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We do not know the probability that an arbitrary email will be flagged, P(F), but we can 
use the Law of Total Probability to find it:

𝑃𝑃(𝐹𝐹) = 𝑃𝑃(𝐹𝐹|𝑇𝑇)𝑃𝑃(𝑇𝑇) + 𝑃𝑃(𝐹𝐹|𝑇𝑇𝐶𝐶)𝑃𝑃(𝑇𝑇𝐶𝐶) 
And, since

P(F|Tc) = 1 – P(F|T) = 1 – 0.95 = 0.05

and

P(Tc) = 1 – P(T) = 1 – 0.1 = 0.9,

we have the following:

𝑃𝑃(𝑇𝑇|𝐹𝐹) = (0.1)(0.95)
(0.95)(0.1) + (0.05)(0.9) ≈ 0.68 

Therefore, even if an email is flagged as spam, there is only a 68% chance the email is spam 
given the flaws in the filter, which seemed quite modest at first.

In this section, we have shown how Bayesian probability is commonly used in identifying 
spam email messages. Spam filtering is one example of a classification problem, which in 
general try to automatically classify objects into categories. The same general idea is very 
common in many other classification problems, and Bayesian probability is one of the 
main tools in this area.

Next, we continue to some more useful probability theory about random variables, which 
we will combine with the Bayesian ideas we have learned to analyze one of the more 
influential ideas in the internet era—Google's PageRank algorithm. 

Random variables, means, and variance
Informally, we can say that random variables are functions that map outcomes to 
numerical values. Since the probability measure assigns probabilities to outcomes and 
events, we may define the probability that a random variable equals certain values. The 
technical definition is as follows.
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Definition – random variable
A function X: S → R, where R is a discrete set, is a discrete random variable (RV).

Important Note
The other main class of RVs is continuous RVs, which take values in R or some 
other uncountable set instead of just a discrete set, but they are outside the 
scope of this book.

Example – data transfer errors
Data transferred over digital communication channels are, at the lowest level, a stream of 
binary digits. Sometimes there can be noise or other distortions that cause errors in their 
transmission. It is important to quantify the errors, but it is random, so the best we can do 
is estimate the chance of different numbers of errors.

Suppose we send a single byte of eight bits, where each digit has a probability p of being 
in error and they are all independent of each other. So, what is the probability that some 
number k out of 8 bits received are incorrect?

By independence, the probability that the first k bits are incorrect and the remaining 8 – k 
bits are correct is pk(1 – p)8-k, since the chance of accuracy is 1 – p. However, the positions 

of the k errors could be chosen from the 8 bits in (8𝑘𝑘)  ways, so if X is an RV counting the 

number of errors, then we have the following for k = 1, 2, …, 8:

𝑃𝑃(𝑋𝑋 = 𝑘𝑘) = (8𝑘𝑘)𝑝𝑝
𝑘𝑘(1 − 𝑝𝑝)8−𝑘𝑘 

Generally speaking, this type of RV is called a binomial RV and the function forms  
its PMF.

On the other hand, some RVs may not come from some well-known class and may be 
constructed from empirical data, as the next example shows.
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Example – empirical random variable
Consider a 10-sided die with numbers 1 through 10, but it is shaped irregularly with some 
sides larger than others and an unknown weight distribution, and we would like to know 
the chance that it takes each value.

Let X be an RV corresponding to the value rolled on the die. To estimate the PMF, one 
approach is to just roll the die repeatedly and count the number of times it lands on each 
number. Suppose we roll the die 1,000 times and we get the following frequencies:

Figure 5.7

These proportions serve as an empirical estimate of the PMF of X.

Definition – expectation
Let X : S → {r1, r2, …} be a discrete random variable. The expectation of X is defined  
as follows:

𝐸𝐸[𝑋𝑋] = 𝑟𝑟1𝑓𝑓(𝑟𝑟1) + 𝑟𝑟2𝑓𝑓(𝑟𝑟2) + ⋯ 
 = 𝑟𝑟1𝑃𝑃(𝑋𝑋 = 𝑟𝑟1) + 𝑟𝑟2𝑃𝑃(𝑋𝑋 = 𝑟𝑟2) +⋯ 

 

=∑𝑟𝑟𝑖𝑖𝑃𝑃(𝑋𝑋 = 𝑟𝑟𝑖𝑖)
∞

𝑖𝑖=1
 

If the sum is not infinite, E[X] is also called the expected value or mean of X. Furthermore, 
if g is a function, then we have the following:

𝐸𝐸[𝑋𝑋] =∑𝑔𝑔(𝑟𝑟𝑖𝑖)ℙ(𝑋𝑋 = 𝑟𝑟𝑖𝑖)
∞

𝑖𝑖=1
 

Note that the expected value is just like a weighted average.
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Example – empirical random variable
Continuing with the previous example, we can calculate the expected value of the RV X 
representing the result of rolling the die as follows:

𝐸𝐸[𝑋𝑋] = (1)(0.129) + (2)(0.242) + (3)(0.053) + (4)(0.016) + (5)(0.057) + (6)(0.095) + (7)(0.228)
+ (8)(0.033) + (9)(0.101) + (10)(0.046) 

= 4.92 

So, the die will be valued at 4.92 on average.

The mean of an RV is important because it tells us the average value of the RV if we were 
to run the underlying random experiment over and over, but this is not the only thing  
we would typically like to know about an RV.

For example, betting $100,000 on rolling a 1, 2, 3, or 4 on a fair six-sided die would result 
in the gambler gaining $34,000 on average, but that does not mean it is a good idea! The 
result is either +$100,000 or -$100,000, and nothing in between, so the RV only takes 
values far away from the mean.

As this example shows, another important consideration is how much the RV tends to 
vary from the mean, so we have a measurement of how spread - out the RV is, called 
variance.

Definition – variance and standard deviation
Let X: S → R be a discrete random variable; its variance is then this:

𝜎𝜎2 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸[𝑋𝑋])2] 

The standard deviation of X is this:

𝜎𝜎 = √𝜎𝜎2 

The following result is typically the more practical formula to use for calculating variance 
than the definition given previously.
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Theorem – practical calculation of variance
If X is a discrete RV, then the following applies:

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[𝑋𝑋2] − 𝐸𝐸[𝑋𝑋]2 

Proof
By definition, the following is true:

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[(𝑋𝑋 − 𝐸𝐸[𝑋𝑋])2] 
 

=∑(𝑠𝑠𝑖𝑖 − 𝐸𝐸[𝑋𝑋])2𝑃𝑃(𝑋𝑋 = 𝑠𝑠𝑖𝑖)
∞

𝑖𝑖=1
 

 

=∑𝑠𝑠𝑖𝑖2𝑃𝑃(𝑋𝑋 = 𝑠𝑠𝑖𝑖) − 2𝐸𝐸[𝑋𝑋]
∞

𝑖𝑖=1
∑𝑠𝑠𝑖𝑖𝑃𝑃(𝑋𝑋 = 𝑠𝑠𝑖𝑖)
∞

𝑖𝑖=1
+ 𝐸𝐸[𝑋𝑋]2∑𝑃𝑃(𝑋𝑋 = 𝑠𝑠𝑖𝑖)

∞

𝑖𝑖=1
 

 
= 𝐸𝐸[𝑋𝑋2] − 2𝐸𝐸[𝑋𝑋]𝐸𝐸[𝑋𝑋] + 𝐸𝐸[𝑋𝑋]2 

 = 𝐸𝐸[𝑋𝑋2] − 𝐸𝐸[𝑋𝑋]2. 

Example – empirical random variable
Continuing the previous example with an irregular 10-sided die, we can calculate the 
variance, recalling that E[X] = 4.92. First, we calculate this:

𝐸𝐸[𝑋𝑋2] = (12)(0.129) + (22)(0.242) + (32)(0.053) + (42)(0.016) + (52)(0.057) + (62)(0.095)
+ (72)(0.228) + (82)(0.033) + (92)(0.101) + (102)(0.046) 

= 32.74 ,
That gives us this:

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) = 𝐸𝐸[𝑋𝑋2] − 𝐸𝐸[𝑋𝑋]2 = 32.74 − (4.92)2 = 8.5336 .

Google PageRank I
In the late 1990s, there were many search engines on the internet, including Yahoo, 
Altavista, and Ask Jeeves, but when Google emerged in the early 2000s, it quickly 
supplanted all of those as the most popular search engine and has remained popular for 
nearly 20 years, in large part because its results were of such high quality that users flocked 
to the website. Google used a new approach to web searches that generated very good 
results. 
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Developed by Stanford University students, and later Google founders, Larry Page and 
Sergey Brin (along with researchers Rajeev Motwani and Terry Winograd) in 1996, 
the algorithm used was called PageRank. Google's primary searching algorithms have 
certainly progressed from this since 1996 but it remains a key part of their approach.

The key idea of PageRank is to not merely to look for websites that match the user's search 
terms most closely like most other search tools at the time but to weight the matches 
by the importance of matching websites in some sense, so that important websites are 
ranked highest and show up first in the list of search results. They measure importance 
by counting the number of links and the quality of the links to various web pages. So, the 
more links a web page has from high-ranked web pages, the higher PageRank will rank 
the page.

While ingenious, PageRank is actually a fairly simple use of probability. It is easy to 
understand the main idea of PageRank with the ideas we have developed in this chapter. 
Suppose we have an internet I of N web pages:

𝐼𝐼 = {𝑊𝑊1,𝑊𝑊2,… ,𝑊𝑊𝑁𝑁} 

On I, we define two functions:

1. Outgoing links, C: I → {0, 1, 2, …, N - 1}, where C(Wj) is the number of links leaving 
the jth web page, where self-links do not count and multiple links to the same web 
page count as a single link.

2. PageRank, PR: I → [0,1], where PR(Wj). It is calculated as follows:

𝑃𝑃𝑃𝑃(𝑊𝑊𝑗𝑗) =  1 − 𝑑𝑑
𝑁𝑁  +  𝑑𝑑 ∑ 𝑃𝑃𝑃𝑃(𝑊𝑊𝑖𝑖)

𝐶𝐶(𝑊𝑊𝑖𝑖)
𝑊𝑊𝑖𝑖∈𝑀𝑀(𝑊𝑊𝑗𝑗)

, 

Here M(Wj) is the set of web pages linking to Wj. In other words, PageRank is 
1 − 𝑑𝑑
𝑁𝑁  

 plus 
d times the sum of ratios of PageRank to outgoing links for each other web page linking  
to Wj.

The constant d ∈  (0,1) is called the damping factor. (The authors set d = 0.85 in their 
original paper, although Google may have adjusted it since then.) Regardless of the  
value of d, it can be shown that the function PR is a probability mass function, assigning 
probabilities to W1, W2, ..., WN. (Note that, by definition, the probabilities assigned by  
a probability mass function sum to 1, so this is what the previous sentence claims, 
mathematically speaking.)
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Important Note
Note that there is some confusion in the literature about the first term of the PR 
calculation: sometimes N is left out of the denominator. This does not have an 
important impact, but the resulting PageRanks do not form a probability mass 
function without this N.

These probabilities have a more intuitive interpretation. PageRank proposes an imaginary 
person navigating this internet who randomly click links and will eventually stop on  
a certain web page. The value d represents the probability that this person will click the 
next link at each step. The PageRank of a web page PR(Wi) represents the probability that 
this randomly clicking surfer will stop on web page Wi.

As an example, suppose N = 5. In other words, suppose our small internet has only 
five web pages. Of course, this is unrealistic, but it allows us to paint the picture of how 
PageRank works on a small scale. We will also assume d = 0.85. Furthermore, suppose  
we have the following structure of links between the web pages:

Figure 5.8

• W1 links to W2, W3, W4, and W5, so C(W1) = 4.

• W2 links to W1 and W4, so C(W2) = 2.

• W3 links to W1, W4, and W5, so C(W3) = 3.

• W4 links to W1, so C(W4) = 1.

• W5 links to W4, so C(W5) = 1.



Google PageRank I     105

Note that the formula for PR(Wi) given previously requires knowledge of every other 
PR(Wi) for i ≠ j, so it cannot be calculated directly. The typical approach is to initially 
assume that each PageRank is equal, or 1/N = 1/5, and then calculate new PageRanks 
iteratively using knowledge about links. 

In the second iteration, the PageRanks are as follows:

Figure 5.9

We see that web pages W1 and W4 would be highest ranked, which makes sense as these 
are the web pages in the diagram with the most incoming links. Furthermore, we see that 
the sum of all five PageRank values is 1, as we claimed by referring to PR as a probability 
mass function. In practice, more iterations would be run using the PageRanks we 
calculated as inputs to the next step along with updated information on links, which may 
change over time.

These ideas from probability explain how Google's PageRank algorithm works, but this 
is certainly not the whole story, as we have only considered a small collection of just 
four web pages. Scaling PageRank up to the entire internet involves the mathematics of 
linear algebra. We will cover the essentials of linear algebra in Chapter 6, Computational 
Algorithms in Linear Algebra.
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Summary
In this chapter, we have primarily discussed the core ideas of probability theory, and in 
particular discrete probability. These allow us to calculate the probability that an event 
will occur, or, in other words, the chance that it will occur. We then applied these ideas to 
some popular modern innovations.

First, we constructed a probability space, made up of a sample space, a set of events, and 
a probability measure. The definition of these topics led directly to many elementary 
properties of probabilities and formulas to compute probabilities of events, such as those 
made up of unions of events and certain intersections of events. This led to an important 
class of probability spaces: the Laplacian space, where each outcome is equally likely. This 
reduces many probability calculations to counting problems, which we learned to solve in 
Chapter 4, Combinatorics Using SciPy.

Then, we considered conditional probability, which is essentially the idea that gaining new 
knowledge should influence our calculation of probabilities. This idea led to some useful 
results, including Bayes' theorem and the Law of Total Probability. After establishing these 
results, we continued to apply them to a classification problem—Bayesian spam filtering—
which seeks to automatically categorize emails as legitimate or spam.

Lastly, we established a little more probability theory about RVs, their averages via means, 
and a measure of how random they are: the variance. These ideas, along with Bayesian 
probability, allowed us to then discuss the Google PageRank approach to ranking results 
in web searches. In the next chapter, we will learn about computational algorithms that are 
used in linear algebra.



Part II – Implementing 
Discrete Mathematics 
in Data and Computer 

Science

This part of the book covers applications of discrete mathematics to core concepts of 
computer science, including linear algebra; the complexity of algorithms in the worst case 
and on average; storing and extracting features from graphs, trees, and networks, graph 
searches; and finding shortest paths on networks.

This part comprises the following chapters:

• Chapter 6, Computational Algorithms in Linear Algebra

• Chapter 7, Computational Requirements for Algorithms

• Chapter 8, Storage and Feature Extraction of Graphs, Trees, and Networks

• Chapter 9, Searching Data Structures and Finding Shortest Paths





6
Computational 

Algorithms in  
Linear Algebra

This chapter covers standard methods and algorithms of linear algebra commonly used 
in computer science and machine learning problems. Linear algebra centers on systems 
of equations, a problem where we need to find a set of numbers that solve not just one 
equation, but many equations simultaneously, using special types of arrays called matrices. 
Matrices can directly model tree, graph, and network structures that are central to so 
many computer science applications and the math behind Google's PageRank, among 
others, all ideas to which we will apply these ideas in later chapters. Systems of equations 
are key in regression analysis and machine learning.

We will delve into solving these systems of equations from both geometric and 
computational perspectives before scaling the methods up to solve larger problems with 
algorithms in Python, because the huge amount of work you would have to do to solve 
large problems by hand would be impractical.

The mathematical content of the topics is complete, although it may be a refresher for 
readers, but the computational algorithms and Python functions are likely new.
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The following topics will be covered in this chapter:

• Understanding linear systems of equations

• Matrices and matrix representations of linear systems

• Solving small linear systems with Gaussian elimination

• Solving large linear systems with NumPy

The chapter is mostly dedicated strictly to the mathematics of linear algebra and its 
algorithms, but they will be applied to practical problems in most of the remaining 
chapters of the book. By the end of the chapter, you will have an understanding of what 
systems of equations are, and learn how to solve small problems by hand and large 
problems with some NumPy functions in Python. In addition, you will learn about 
matrices and how to do arithmetic with them, both by hand and with Python.

Important Note
Please navigate to the graphic bundle link to refer to the color images for  
this chapter.

Understanding linear systems of equations
Equations of two variables whose graphs are straight lines, or linear equations, are one 
of the core parts of any elementary algebra course. They model simple proportional 
relationships well, but several linear equations taken at once, perhaps involving more than 
just two variables, allow for the modeling of much more complex situations, as we will see.

In this section, we discuss these familiar equations and then consider the idea of  
a system of multiple linear equations that we wish to solve all at once. We also define 
linear equations and systems of linear equations that involve more than just two variables 
and show how to solve them by hand.

Definition – Linear equations in two variables
A linear equation of the variables x1 and x2 is any equation that can be written in the form 
a1x1 + a2x2 = b for some real numbers a1, a2, and b. The solutions of the equation are all 
ordered pairs (x1, x2) ∈  R2 that satisfy the equation.
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Definition – The Cartesian coordinate plane
The Cartesian coordinate plane is the familiar concept of a 2D plane on which we can plot 
points corresponding to an ordered pair of coordinates (x1, x2). The first coordinate x1 
represents the horizontal position of the point and the second coordinate x2 represents the 
vertical position of the point, as can be seen here:

Figure 6.1 – A Cartesian coordinate plane with points A (2,1), B (-2,-2), and C (1,-3)

Some readers may be accustomed to seeing the coordinate axes labeled as x and y with 
coordinate (x, y), but we go with x1 and x2 because we will continue to develop some 
useful theory in more dimensions.

For example, in 3D space, where we have not only left-right and up-down axes, but also  
a forward-backward axis, which we will label x3, additional dimensional spaces are 
difficult, if not impossible, to visualize fully since our human eyes are adapted to see  
in the three spatial dimensions, but a 4D space has a fourth axis labeled x4, a 5D space  
has a fifth one, and so on.
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Example – A linear equation
Consider the linear equation 6x1 + 3x2 = 3. We can solve x2 in terms of x1 as follows. First, 
subtract 6x1 from each side to get 3x2 = 3 – 6x1.

Then, divide each side of the equation by 3 to get x2 = 1 – 2x1.

Therefore, we get the solution set of the equation to be the set of all ordered pairs (in other 
words, points on the plane), where x2 = 1 – 2x1, which we can write in set notation as {(x1, 
1 – 2x1) : x1 ∈  R}. In other words, for any given real x-coordinate x1, we can construct  
a corresponding y-coordinate as 1 – 2x1.

Notice there are infinitely many solutions to the linear equation, one ordered pair for 
each real number. While we cannot plot infinitely many points to draw the graph of the 
function in reality, if we choose several x1 coordinates, compute the corresponding x2 
coordinates, and plot the points on the Cartesian coordinate plane, we see that they are 
aligned along a linear path:

Figure 6.2 – The graph of the linear equation x2 = 1 – 2x1. Note that the line passes through points 
(x1, x2) = (1, -1) and (x1, x2) = (0, 1), which we can see clearly satisfy the equation

It turns out that the graph of every linear equation traces out a straight line in the 
Cartesian coordinate plane, which is precisely why we call them linear.
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Definition – System of two linear equations in two 
variables
A linear system of two equations of variables x1 and x2 is made up of two linear equations 
of x1 and x2. A solution to the system is an ordered pair (x1, x2) that satisfies both equations 
simultaneously. 

Since each equation can be represented as a line, the geometric equivalent of this problem 
is to find point(s) of intersection of the lines. Intuitively, it is clear two lines may cross at 
exactly one point, the lines may be parallel and never intersect, or the lines may coincide 
with one another entirely.

If the lines cross, we call the system consistent. If the lines are parallel, we call the system 
inconsistent. If the lines coincide, we call the system dependent. The next three examples 
will investigate each of these three situations.

Example – A consistent system
Consider the following system of two linear equations:

2x1 + 3x2 = -1

6x1 + 3x2 = 3

To find a solution to the system, we need to find coordinates x1 and x2 such that both 
equations are satisfied simultaneously. So, suppose these coordinates exist, then we can 
think about what must be true about them. The second equation must be true, so if  
we solve it for x2 (as we did earlier), we see x2 = -2x1 + 1, an expression of x2 in terms of x1. 
If we knew x1, this would provide a formula for us to establish the other coordinate, x2.

Since the first equation must also be satisfied for a solution (x1, x2), it must be valid to 
replace x2 with –2x1 + 1 in that equation, which provides a path to find x1:

2x1 + 3(-2x1 + 1) = -1.

Multiplying the 3 by each term in the parentheses, we have the following:

2x1 - 6x1 + 3 = -1.

Combining the x1 terms and subtracting 3 from each side of the equation, we have the 
following:

-4x1 = -4

This gives the value of x1 if we divide each side of the equation by -4:

x1 = 1
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Thus, if there exists a solution, its x1 coordinate is 1, but we know we can compute x2 as

x2 = -2(1) + 1 = -2 + 1 = -1,

so, we see the solution must be (x1, x2) = (1, -1). Plotting the two lines on a graph confirms 
that the point (1, -1) is precisely where the two graphs of the linear equations cross: 

Figure 6.3 – The graphs of the two linear equations cross at point (1, -1)

Since the lines cross at one point, it is a consistent system. The point (1, -1) is the only 
solution to the system of equations, the single point where the lines cross.

Example – An inconsistent system
Consider the following system of two linear equations:

2x1 + x2 = 3

6x1 + 3x2 = 3

To find a solution to the system, again, we need to find coordinates x1 and x2 such that 
both equations are satisfied simultaneously. So, suppose these coordinates exist, then  
we can think about what must be true about them. The second equation must be true,  
so if we solve it for x2 (as we did above), we see

x2 = -2x1 + 1,

an expression of x2 in terms of x1. If we knew x1, this would provide a formula for us to 
establish the other coordinate, x2.
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Since the first equation must also be satisfied for a solution (x1, x2), it must be valid to 
replace x2 with –2x1 + 1 in that equation, which provides a path to find x1:

2x1 + (-2x1 + 1) = 3

Adding the x1 terms, we get

1 = 3.

Clearly something went wrong here, but what is it exactly? Our initial assumption was 
that there exists a point (x1, x2) that satisfies both equations, but this assumption logically 
implies a result that says 1 = 3, which is clearly false.

The proof by contradiction method we learned in Chapter 2, Formal Logic and 
Constructing Mathematical Proofs, reveals that this initial assumption must have been 
false, so there is no such point: there is no solution to this system of equations.

In the following graph, we see that the two lines are parallel, and therefore never cross one 
another. This means the lines share no points, as can be seen in the following graph:

Figure 6.4 – The graphs of the two linear equations in this example are parallel, so they never cross and 
there are no solutions to the system

As we defined previously, a linear system of equations that are geometrically represented 
as parallel lines is inconsistent. This means there is no solution to the system because there 
is no point that touches both lines.
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Example – A dependent system
Consider the following system of two linear equations:

2x1 + x2 = 1

6x1 + 3x2 = 3

To find a solution to the system, again, we need to find coordinates x1 and x2 such that 
both equations are satisfied simultaneously. So, suppose these coordinates exist, then  
we can think about what must be true about them. The second equation must be true,  
so if we solve it for x2 (as we did previously), we see

x2 = -2x1 + 1,

an expression of x2 in terms of x1. If we knew x1, this would provide a formula for us to 
establish the other coordinate, x2.

Since the first equation must also be satisfied for a solution (x1, x2), it must be valid to 
replace x2 with –2x1 + 1 in that equation, which provides a path to find x1:

2x1 + (-2x1 + 1) = 1

Adding the x1 terms, we are left with only

1 = 1.

Once again, something does not seem quite right. Instead of getting the x1 coordinate  
we wanted, we get a simple result that says 1 = 1. This is obviously true, but it is not  
a solution to the linear system, so what does it mean?

If we take the second equation and divide it by 3, we get 2x1 + x2 = 1, the same as the first 
equation, so the second equation is not really adding any extra information in a sense.  
If a point (x1, x2) satisfies the first equation, of course it satisfies the second, and vice versa. 
Therefore, each line represents the same set of infinitely many points, so any point in the 
form (x1, -2x1 + 1), given a real number x1, is a solution.

We call such systems of linear equations with infinitely many solutions dependent because 
we have two equations representing identical lines, as can be seen in the following graph:
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Figure 6.5 – The graphs of the two linear equations in this example are geometrically the same line, so 
every point on one line is on the other line, so they are all solutions to the system of equations

So far in this chapter, we have defined linear equations with two unknowns and drawn 
their graphs, which are lines. Then, we considered linear systems of two equations with 
two unknowns. As there are two linear equations, plotting the two equations results in two 
lines. Then, in a series of examples, we saw that there are three possible types of system of 
two linear equations:

• Consistent system: The lines cross at one point, which is the unique solution to the 
system.

• Inconsistent system: The lines never cross, so there are no solutions.

• Dependent system: The lines are the same, so all points on the line are solutions.

In the next couple of pages, we will extend these ideas to linear systems of more than 
two equations with more than two unknowns. Although the situation becomes more 
complicated in this setting, much of the preceding theory still applies. Linear systems are 
still classified the same way, with these same three classes.

Let's define a few more notions for these larger systems of linear equations before 
continuing to solve them, which turns out to be harder to do by hand than these examples, 
so we will turn to a number of Python functions to solve them for us once we understand 
the main idea of the solution method.
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Definition – Systems of linear equations and their 
solutions
A system of n linear equations in variables x1, x2, …, xn is a set of equations in the 
following form:

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 +⋯+ 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏1 
 

𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 +⋯+ 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏2 
 

    ⋮               ⋮            ⋱         ⋮ 
 𝑎𝑎𝑛𝑛1𝑥𝑥1 + 𝑎𝑎𝑛𝑛2𝑥𝑥2 +⋯+𝑎𝑎𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏𝑛𝑛 

where each aij and bi is a real constant. A solution to the system is a point (x1, x2, …, xn) in 
n-dimensional space that solves all of the equations simultaneously.

So, just like the definition when we limited it to two equations and two variables, we seek 
a point that solves all the equations. However, instead of the solution being a point in a 2D 
coordinate plane, the solutions to these are points in a higher dimensional space. The 3D 
case is easy to visualize, as we are accustomed to seeing the world in three dimensions, but 
it is not possible to visualize the higher dimensional spaces quite so well, so the geometric 
interpretations of solutions are not so easy to discuss. Nevertheless, the mathematics  
we will present produces accurate results in those higher dimensional spaces.

Definition – Consistent, inconsistent, and dependent 
systems
A system of n linear equations with n variables falls into one of three categories:

• If the system has one solution, it is called consistent.

• If the system has no solutions, it is called inconsistent.

• If the system has infinitely many solutions, it is called dependent.

It is possible to solve these larger systems of linear equations by hand by means of  
a substitution process similar to what we did in the preceding example, but it quickly  
gets very long and tedious, so we will present a standard method called Gaussian 
elimination that always works, but it is best left to algorithms in practice. However,  
we need to do some pre-processing to the system to put it into a special new form with 
some mathematical structures called matrices before we can use Gaussian elimination 
(both by hand and with Python).
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Matrices and matrix representations of linear 
systems
Solving systems of more than two equations in more than two variables is very 
cumbersome under the algebraic notation we used previously for the small notations, 
so we need an alternate notation. We will take the coefficients of a system of n linear 
equations with n unknowns denoted aij above and arrange them in a special sort of array 
called a matrix. What makes matrices distinct from arrays you may be accustomed to 
using in code is that matrices have a special multiplication operation that simplifies many 
calculations and, especially, makes solving larger linear systems much easier.

We will also represent the xj and the bi terms as matrices to make a single matrix equation 
instead of n separate equations. Once we do that, we will be ready to solve these larger 
systems efficiently by hand and then with Python.

Definition – Matrices and vectors
An m-by-n matrix A is a rectangular array of numbers with m rows and n columns, which 
have some associated mathematical operations defined between matrices and between 
numbers and matrices.

Each number in a matrix is called an entry or element of the matrix and the entry in the ith 
row and jth column is typically written with a lowercase aij. A matrix is usually written in 
the form

𝐀𝐀 = [
𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

] = (𝑎𝑎𝑖𝑖𝑖𝑖) 

.

Vectors are matrices with either one row or one column. The following vectors are called 
the column vectors of A, where each column of A will become a vector: 

[
𝑎𝑎11
𝑎𝑎21
⋮

𝑎𝑎𝑚𝑚1

] , [
𝑎𝑎12
𝑎𝑎22
⋮

𝑎𝑎𝑚𝑚2

] ,… , [
𝑎𝑎1𝑛𝑛
𝑎𝑎2𝑛𝑛
⋮

𝑎𝑎𝑚𝑚𝑛𝑛

] 

The following vectors are called the column vectors of A:
[𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛], [𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛],… , [𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛] 
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In Python, we can represent the following two matrices,

𝐀𝐀 = [
3 2 1
9 0 1
3 4 1

]  and 𝐁𝐁 = [
1 1 2
8 4 1
0 0 3

] ,

and access specific entries of the matrices in the following code:

import numpy 

# initialize matrices 
A = numpy.array([[3, 2, 1], [9, 0, 1], [3, 4, 1]]) 
B = numpy.array([[1, 1, 2], [8, 4, 1], [0, 0, 3]])

# print the entry in the first row and first column of A
print(A[0,0])

# print the entry in the second row and third column of B
print(B[1,2])

So, the code first creates the two matrices, A and B, given here. (They are called NumPy 
arrays in the language of Python.)

Then, we call and print the number in the very first row and very first column of matrix A, 
which in code is A[0,0], but in mathematical notation is a11 = 3, which the code outputs. 
Lastly, we similarly choose B[1,2], the element in row 2 and column 3 of matrix B, in 
other words, b23 = 1

3
1

It is important to be aware that Python and most other programming languages begin 
indexing arrays (and matrices) with 0 while mathematicians tend to start with 1, which is 
why the numbers in the code are one less than the mathematical language would suggest.

Important note
There is a matrix class built into NumPy that has been used for linear algebra, 
but current documentation says this class will be deprecated in the future, so 
users should use arrays instead. We will follow this convention.
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Now that we have some common vocabulary about matrices, we will discuss ways to 
manipulate matrices, multiply them with numbers, add and subtract matrices, and 
multiply matrices. These operations are what distinguish matrices from ordinary arrays.

Definition – Matrix addition and subtraction
Let A = (aij) and B = (bij) be m-by-n matrices. Their sum is found by simply adding the 
entries of each matrix elementwise, meaning each aij is added to each bij as follows:

𝐀𝐀 +𝐁𝐁 = [
𝑎𝑎11 + 𝑏𝑏11 𝑎𝑎12 + 𝑏𝑏12 ⋯ 𝑎𝑎1𝑛𝑛 + 𝑏𝑏1𝑛𝑛
𝑎𝑎21 + 𝑏𝑏21 𝑎𝑎22 + 𝑏𝑏22 ⋯ 𝑎𝑎2𝑛𝑛 + 𝑏𝑏2𝑛𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑚𝑚1 + 𝑏𝑏𝑚𝑚1 𝑎𝑎𝑚𝑚2 + 𝑏𝑏𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛 + 𝑏𝑏𝑚𝑚𝑛𝑛

] 

In other words, we add up the terms in the same positions in matrix A and in matrix B.

And the difference in two matrices works similarly, as can be seen here:

𝐀𝐀 −𝐁𝐁 = [
𝑎𝑎11 − 𝑏𝑏11 𝑎𝑎12 − 𝑏𝑏12 ⋯ 𝑎𝑎1𝑛𝑛 − 𝑏𝑏1𝑛𝑛
𝑎𝑎21 − 𝑏𝑏21 𝑎𝑎22 − 𝑏𝑏22 ⋯ 𝑎𝑎2𝑛𝑛 − 𝑏𝑏2𝑛𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑚𝑚1 − 𝑏𝑏𝑚𝑚1 𝑎𝑎𝑚𝑚2 − 𝑏𝑏𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛 − 𝑏𝑏𝑚𝑚𝑛𝑛

] 

In other words, we subtract up the terms in the same positions in matrix A and in matrix B.

Important note
The sum and difference of two matrices is only defined if the two matrices have 
the same dimensions, in other words, the same number of rows and the same 
number of columns.

We can use the numpy.add and numpy.subtract functions to add and subtract 
matrices in Python as in the following code, which follows from the preceding code:

# Add A and B
print(numpy.add(A,B))

# Subtract A and B
print(numpy.subtract(A,B))
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The code has the following output:

[[ 4  3  3]
 [17  4  2]
 [ 3  4  4]]

[[ 2  1 -1]
 [ 1 -4  0]
 [ 3  4 -2]]

Of course, this is in fact A + B and A – B, which we could find by hand if we add and 
subtract all the numbers in the matrices element by element.

Next, we continue with more arithmetic of matrices: multiplying a whole matrix by  
a scalar (or, by a number).

Definition – Scalar multiplication
Let c ∈  R be a real number. Such a constant is frequently referred to as a scalar. The 
product of this scalar c and a matrix A is defined as a matrix where each element is the 
product of c times the corresponding element of A:

𝑐𝑐𝐀𝐀 = 𝑐𝑐 [
𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

] = [
𝑐𝑐𝑎𝑎11 𝑐𝑐𝑎𝑎12 ⋯ 𝑐𝑐𝑎𝑎1𝑛𝑛
𝑐𝑐𝑎𝑎21 𝑐𝑐𝑎𝑎22 ⋯ 𝑐𝑐𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑐𝑐𝑎𝑎𝑚𝑚1 𝑐𝑐𝑎𝑎𝑚𝑚2 ⋯ 𝑐𝑐𝑎𝑎𝑚𝑚𝑛𝑛

] 

In simpler terms, we simply take our real number c and multiply it by each and every 
number in the matrix.

As we see, the sum and differences of matrices and the scalar multiplication of matrices 
are somewhat obvious, as we simply do the operations for each element. Matrix 
multiplication, on the other hand, is not simply elementwise multiplication.

Before that, we define transposes of matrices and a special case of the matrix product 
called the dot product, which is limited to multiplying a row vector by a column vector.
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Definition – Transpose of a matrix
Let A = (aij) be an m-by-n matrix. The transpose of A, denoted AT, is the n-by-m matrix 
resulting from switching each element in the ith row and jth column of A to the element in 
the jth row and ith column of the new matrix,

𝐀𝐀𝑇𝑇 = [
𝑎𝑎11 𝑎𝑎21 ⋯ 𝑎𝑎𝑛𝑛1
𝑎𝑎12 𝑎𝑎22 ⋯ 𝑎𝑎𝑛𝑛2
⋮ ⋮ ⋱ ⋮

𝑎𝑎1𝑚𝑚 𝑎𝑎2𝑚𝑚 ⋯ 𝑎𝑎𝑛𝑛𝑚𝑚
] 

.

In simpler terms, a transpose moves the elements of a matrix around by swapping the row 
of an element with its column. Here are a couple of examples:

• Element a21 in row 2, column 1 of the original matrix A moves to row 1, column 2 in 
the new transpose matrix, AT.

• Element an1 in row n, column 1 of the original matrix A moves to row 1, column n 
in the new transpose matrix, AT.

Important note
The transpose of a matrix in general has different dimensions to the original 
matrix, with the number of rows and the number of columns interchanged.

We can also use NumPy to do scalar multiplication and find transposes, as the following 
code, continuing on from the previous code, will do:

# Multiply A by a scalar 5
print(numpy.multiply(5,A))

# Find the transpose of A
print(numpy.transpose(A))

The output of this code is as expected:

[[15 10  5]
 [45  0  5]
 [15 20  5]]

[[3 9 3]
 [2 0 4]
 [1 1 1]]
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The first multiplication of 5 with the matrix A multiplies each element of the original 
matrix by the number 5. The second part takes a transpose properly by swapping the rows 
with the columns of the original A matrix.

To wrap up the section, we will look at multiplication not between a number and a matrix, 
but multiplication between two matrices, which has some special rules. This allows us to 
convert systems of linear equations of any size into a single matrix equation.

Definition – Dot product of vectors
The dot product of a 1-by-n row vector a and an n-by-1 column vector b is defined as

𝐚𝐚 ⋅ 𝐛𝐛𝑇𝑇 = 𝐚𝐚𝐛𝐛𝑇𝑇 = [𝑎𝑎1 𝑎𝑎2 ⋯ 𝑎𝑎𝑛𝑛][
𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑛𝑛
]

𝑇𝑇

=∑𝑎𝑎1𝑗𝑗𝑏𝑏𝑗𝑗1
𝑛𝑛

𝑗𝑗=1
= 𝑎𝑎11𝑏𝑏11 + 𝑎𝑎12𝑏𝑏21 +⋯+ 𝑎𝑎1𝑛𝑛𝑏𝑏𝑛𝑛1 

.

In other words, we multiply the first number in a by the first number in b, the second 
number in a by the second number in b, and so on, and add up all of the results of these 
multiplications.

In general, matrix multiplication for larger matrices computes dot products of the rows  
of the first matrix and columns of the second matrix.

Definition – Matrix multiplication
Let A be an n-by-m and let B be an m-by-p matrix, written in the forms

𝐀𝐀 = [
𝐚𝐚1
𝐚𝐚2
⋮
𝐚𝐚𝑛𝑛
]   and  𝐁𝐁 = [𝐛𝐛1𝑇𝑇 𝐛𝐛2𝑇𝑇 ⋯ 𝐛𝐛𝑝𝑝𝑇𝑇] ,

where each ai and bj is a 1-by-m column vector. So, we represent our matrix A by stacking 
up its horizontal rows a1, a2, …, an, and we represent our matrix B by stacking its vertical 
columns side by side.

The product of the matrices is denoted by AB and the element of AB in the ith row and jth 
column is the dot product of the ith row of A and the jth column of B, as follows:

𝐀𝐀𝐀𝐀 =

[
 
 
 
 𝐚𝐚1𝐛𝐛1

𝑇𝑇 𝐚𝐚1𝐛𝐛2
𝑇𝑇 ⋯ 𝐚𝐚1𝐛𝐛𝑝𝑝

𝑇𝑇

𝐚𝐚2𝐛𝐛1
𝑇𝑇 𝐚𝐚2𝐛𝐛2

𝑇𝑇 ⋯ 𝐚𝐚2𝐛𝐛𝑝𝑝
𝑇𝑇

⋮ ⋮ ⋱ ⋮
𝐚𝐚𝑛𝑛𝐛𝐛1

𝑇𝑇 𝐚𝐚𝑛𝑛𝐛𝐛2
𝑇𝑇 ⋯ 𝐚𝐚𝑛𝑛𝐛𝐛𝑝𝑝

𝑇𝑇]
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In simpler terms, matrix multiplication takes the dot product of each row vector of A with 
each column vector of B.

Important note
The matrix product AB is only defined when A has the same number of 
columns as B has rows, and AB has the same number of rows as A and the same 
number of columns as B. Thus, multiplying an n-by-m matrix by an m-by-p 
matrix is permitted and results in an n-by-p matrix.

This definition can feel a little difficult, so next, we will do an example where we carefully 
multiply two matrices by hand and then do it in Python.

Example – Multiplying matrices by hand  
and with NumPy
Define two matrices as

𝐀𝐀 = [1 3 1
2 3 0]   and  𝐁𝐁 = [

3 5
1 0
2 2

] .

Then, the product can be computed as

𝐀𝐀𝐀𝐀 = [1 3 1
2 3 0] [

3 5
1 0
2 2

] 

 
.

By the definition of matrix multiplication, this is a matrix made up of dot products of each 
row of A with each column of B:

𝐀𝐀𝐀𝐀 = [𝐚𝐚1𝐛𝐛1
𝑇𝑇 𝐚𝐚1𝐛𝐛2𝑇𝑇

𝐚𝐚2𝐛𝐛1𝑇𝑇 𝐚𝐚2𝐛𝐛2𝑇𝑇
] 

 
To do each of the four dot products, we multiply the first term of a row by the first term of 
a column, the second term of a row by the second term of a column, and finally the third 
term in a row by the third term of a column and add them up:

𝐀𝐀𝐀𝐀 = [(1)(3) + (3)(1) + (1)(2) (1)(5) + (3)(0) + (1)(2)
(2)(3) + (3)(1) + (0)(2) (2)(5) + (3)(0) + (0)(2)] 
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Simplifying the arithmetic, we get

𝐀𝐀𝐀𝐀 = [8 7
9 10] 

Suppose we were to multiply BA instead. This is possible since B is 3-by-2 and A is 2-by-3, 
so the result BA will be a 3-by-3 matrix. Unlike ordinary multiplication, with matrix 
multiplication, we have AB ≠ BA in some cases. Mathematically, this means matrix 
multiplication is not a commutative operation: the order of the factors matters.

We see matrix multiplication is easy enough to do by hand for a small matrix, but if the 
matrices were much larger, the number of steps in the arithmetic would make this pretty 
inefficient, so we generally prefer to use code. We may multiply matrices with NumPy 
with the following code. Again, this continues on from the previous code in this section:
# Multiply A and B
print(numpy.dot(A,B))

The output is as follows
[[19 11 11]
 [ 9  9 21]
 [35 19 13]]

Important note
NumPy has numpy.multiply and numpy.dot functions.

numpy.multiply performs component-wise multiplication.

numpy.dot performs matrix multiplication, as we defined previously.

Now that we know about matrix multiplication, the definition of a system of n linear 
equations with n unknowns x1, x2 …, xn can be written in terms of matrix multiplication as

[
𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 ⋯ 𝑎𝑎𝑛𝑛𝑛𝑛
] [
𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛
] = [

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑛𝑛
] 

,

which can be written much more compactly as Ax = b and we call it an n-by-n linear 
system, corresponding to the dimensions of A. Now, to see why this is true if things aren't 
clear, let's multiply out the matrix and see what happens. If we compute the dot product of 
row 1 of A by the x vector and set it equal to the top number in the b vector, we get

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 +⋯+ 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏1 ,

which is exactly the first equation in our system!
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For another one, let's multiply the dot product row 2 of A by the x vector and set it equal 
to the second number in b:

𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 +⋯+ 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏2 ,

which is the second equation in the system. Continuing this for each row, the matrix 
multiplication of A by x will generate each equation, one by one. So, we see this  
sort of matrix equation is equivalent to all n equations in our system, with each  
row corresponding to one of the equations.

Another common representation that we will use is a so-called augmented matrix to 
represent the system as follows:

[𝐀𝐀|𝐛𝐛] = [
𝑎𝑎11 𝑎𝑎21 ⋯ 𝑎𝑎𝑛𝑛1
𝑎𝑎12 𝑎𝑎22 ⋯ 𝑎𝑎𝑛𝑛2
⋮ ⋮ ⋱ ⋮

𝑎𝑎1𝑚𝑚 𝑎𝑎2𝑚𝑚 ⋯ 𝑎𝑎𝑛𝑛𝑚𝑚
|
𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑛𝑛
] 

.

Each row in the augmented matrix [A|b] corresponds to one of the equations. The ith row 
of [A|b] corresponds to the ith equation of the system:

ai1x1 + ai2x2 + … + ainxn = bi

Next, we look at an approach to solve these linear systems called Gaussian elimination and 
learn how to implement it with code.

Solving small linear systems with Gaussian 
elimination
In this section, we will learn how to solve an n-by-n linear system of equations Ax = b,  
if possible, through a method called Gaussian elimination, which we will do by hand for 
a small problem. In the next section, we implement it with Python.

We will explain through an example of a 3-by-3 system, which should make the idea clear 
for larger systems, which we will formalize at the end of the section, and which we will 
prefer to solve with code.
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First, notice that there are several manipulations we may do to the equation in the system 
without changing the solutions:

• We can switch the order of the equations, which corresponds to swapping the rows 
of the matrix [A|b].

• We can multiply both sides of an equation by a constant, which corresponds to 
multiplying a row of [A|b] by a constant.

• We can add a multiple of one equation to another equation, which corresponds to 
adding a multiple of one row of [A|b] to another row.

The effects of the augmented matrix corresponding to each of these manipulations are 
called elementary row operations. Gaussian elimination is a method that will use specific 
sequences of row operations to manipulate the system into a very simple version that will 
make it immediately solvable or reveal it to be inconsistent or dependent. The form is 
shown next.

Definition – Leading coefficient (pivot)
For each row of a matrix not fully filled with zeros, the leading coefficient (or pivot) of the 
row is the first non-zero number in the row.

For example, consider the matrix

[
2 3 0
0 1 2
0 5 4

] 
.

The pivots of this matrix are the 2 in the first row, the 1 in the second row, and the 5 in the 
third row.

Definition – Reduced row echelon form
A matrix is in reduced row echelon form (RREF) if the following applies:

• Any zero rows are on the bottom.

• The pivot of each non-zero row is a 1 and is to the right of the pivot of the  
previous row.

• Each column containing a 1 pivot has zeros in all other entries.
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Example – Consistent system in RREF
For example, the following matrix is in RREF:

[
1 0 0
0 1 0
0 0 1

|
2
3
1
] 

The corresponding linear system is simply

1x1 + 0x2 + 0x3 = 2

0x1 + 1x2 +0x3 = 3

0x1 + 0x2 + 1x3 = 1.

In other words, an augmented matrix in RREF immediately gives the solution of  
a linear system, (2, 3, 1) in this case, if it has a pivot in each row and we know the system 
is, therefore, consistent. In most cases, we will have a more complex augmented matrix 
initially that is transformed into this form using elementary row operations.

Example – Inconsistent system in RREF
Suppose a system has an augmented matrix in RREF as follows:

[
1 0 0
0 1 1
0 0 0

|
4
1
2
] 

Even though the third column has multiple numbers in it, this is permitted since that 
column does not contain a pivot 1. The corresponding system of equations is

1x1 + 0x2 + 0x3 = 4

0x1 + 1x2 + 1x3 = 1

0x1 + 0x2 + 0x3 = 2.

However, the third row suggests 0 = 2, a contradictory statement. Just like the case with 
a system of two linear equations, this means the system is inconsistent – in other words, 
it has no solutions. In 2D, this means the lines are parallel, but in 3D, the equations 
represent planes, so it means at least two of the planes are parallel.
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Example – Dependent system in RREF
Lastly, consider a system with the following RREF augmented matrix:

[
1 0 1
0 1 2
0 0 0

|
1
6
0
] 

If we convert this RREF form back into equation form, we have

1x1 + 0x2 + 1x3 = 1

0x1 + 1x2 + 2x3 = 6

0x1 + 0x2 + 0x3 = 0.

The last line is true but tells us nothing about x3. Just like the 2D case, this means the 
system is dependent. In this situation, x3 is called a free variable because we can construct 
a point solving the system for any given x3 value.

Given x3, we know that x1 = 1 – x3 and x2 = 6 – 2x3, so the solution set for this system of 
three linear equations is {(1 – x3, 6 – 2x3, x3) : x3 ∈  R}, in other words, any ordered pair in 
this form is a solution.

Now we have learned the three permissible row operations and that we can easily 
determine the solution of a linear system if we have transformed the system's augmented 
matrix into RREF, so the question becomes, simply: Which row operations do we need to 
do to go from a given augmented matrix to RREF?

Gaussian elimination answers this question by providing a sequence of row operations 
that will never fail to do this conversion, which we define now.

Algorithm – Gaussian elimination
The specifics of different implementations of this method may vary and have some 
changes to optimize the calculations, but the most direct approach is provided by the 
following pseudocode:

Step 1: Re-order the rows of [A|b] from i to n so that the leftmost pivot is and 
pivots in subsequent rows are in the same column or to the right of the pivot of the 
previous row.

Step 2: Set i = 1.

Step 3: Divide row i by its pivot.

Step 4: Add multiples of row i to each successive row chosen such that the numbers 
under the pivot of row i become zeros.
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Step 5: Add 1 to i.

Step 6: Move all zero rows of [A|b] to the bottom. Set m to be the number of zero 
rows.

Step 7: If i < n – m, return to Step 3. Otherwise, i = n – m and continue to Step 8.

Step 8: If row i has a pivot, add multiples of row i to all previous rows chosen 
such that the numbers above the pivot of row i become 0. Otherwise, proceed 
immediately to Step 9.

Step 9: Subtract 1 from i.

Step 10: If i = 1, terminate. Otherwise, return to Step 8.
The first phase of Gaussian elimination (Steps 1-6) ensures the matrix has all pivots set to 
1 with 0s under them. The second phase (Steps 8-10) fills in 0s above the pivots so that the 
matrix is converted to RREF. Augmented matrices will represent the same linear system as 
the original [A|b].

Example – 3-by-3 linear system
Consider the system of linear equations:

2x1 – 6x2 + 6x3 = -8

2x1 + 3x2 – x3 = 15

4x1 – 3x2 – x3 = 10

We can write this system of equations as the following augmented matrix:

[
2 −6 6
2 3 −1
4 −3 −1

|
−8
15
19

] 

First, divide row 1 by 2 to get the following:

[
2 −6 6
2 3 −1
4 −3 −1

|
−8
15
19

]  
    12(row 1)     
→         [

1 −3 3
2 3 −1
4 −3 −1

|
−4
15
19

] 

Next, add -2 times the first row to row 2 and -4 times the first row to row 3 to fill in zeros 
under the first pivot:

[
1 −3 3
2 3 −1
4 −3 −1

|
−4
15
19

]  row 2+(−2)(row 1)  →               [
1 −3 3
0 9 −7
4 −3 −1

|
−4
23
19

]   row 3+(−4)(row 1)   →                [
1 −3 3
0 9 −7
0 9 −13

|
−4
23
35

] 
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Then, divide row 2 by 9 so its pivot becomes 1:

[
1 −3 3
0 9 −7
0 9 −13

|
−4
23
35

] 
    19(row 2)     
→         [

1 −3 3
0 1 −7

9
0 9 −13

|
−4
23
9
35

] 

Add -9 times row 2 to row 3:

[
1 −3 3
0 1 −7

9
0 9 −13

|
−4
23
9
35

]     row 3+(−9)(row 2)     →                 [
1 −3 3
0 1 −7

9
0 0 −6

|
−4
23
9
12

] 

Dividing row 3 by -6 completes the first phase of Gaussian elimination:

[
1 −3 3
0 1 −7

9
0 0 −6

|
−4
23
9
12

]
    1−6(row 3)     
→          [

1 −3 3
0 1 −7

9
0 0 1

|
−4
23
9
−2

] 

The remaining steps will comprise the second phase of Gaussian elimination. To fill in 
zeros above the last pivot, add 7/9 times row 3 to row 2 and add -3 times row 3 to row 1:

[
1 −3 3
0 1 −7

9
0 0 1

|
−4
23
9
−2

]
 row 2+79(row 3)  
→            [

1 −3 3
0 1 0
0 0 1

|
−4
1
−2

]  row 1+(−3)(row 3)  →               [
1 −3 0
0 1 0
0 0 1

|
2
1
−2

] 

Lastly, add 3 times row 2 to row 1 to get to the RREF:

[
1 −3 0
0 1 0
0 0 1

|
2
1
−2

]  row 1+(3)(row 2)  →              [
1 0 0
0 1 0
0 0 1

|
5
1
−2

] 

Thus, this RREF form reveals the system is consistent and its solution (5, 1, -2), is the 
numbers in the rightmost column.

In this section, we have introduced the reduced row echelon form (RREF) of a matrix 
corresponding to a linear system of equations introduced in the previous sections. The 
RREF always easily reveals the solution to the system if it exists, or reveals the system is 
inconsistent if there is no solution. After that, we considered an algorithm called Gaussian 
elimination that never to convert the matrix corresponding to an n-by-n linear system of 
equations to the RREF and, therefore, reveals the solution if possible. Lastly, we applied 
the algorithm by hand to a small, 3-by-3 linear system.

Now that we understand the problem Gaussian elimination solves and how it works,  
we will continue to learn how to implement the algorithm with NumPy.
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Solving large linear systems with NumPy
The last example should make it clear that Gaussian elimination will work for any linear 
system to reduce it to RREF form, but this 3-equation, 3-variable system required  
a significant amount of effort to solve, and things will only become more complex for 
larger systems, so the more practical way to do it is to use existing algorithms. In this 
section, we will learn how to use some methods with NumPy to accomplish this task.

A Python function for solving systems of linear equations Ax = b is available in NumPy 
named numpy.linalg.solve, which works for square, consistent systems. That is,  
it finds solutions for all linear systems that have unique solutions.

Typically, the function uses a version of Gaussian elimination just as we have done by 
hand, but it is a very smart function. First, the function chooses the order of calculations 
carefully to optimize its speed. Second, if the function detects that A has a special structure 
(such as a symmetric, diagonal, or banded matrix), it will take shortcuts and use variants of 
Gaussian elimination and other methods that exploit the structure to run even faster!

Although we will not delve into these other methods since it would require an in-depth 
study of linear algebra, we can think of the function in terms of what it accomplishes and 
avoid the details. Nevertheless, we benefit from the speed-ups.

Let's try it!

Example – A 3-by-3 linear system (with NumPy)
We begin with a system we already solved by hand just to be sure we get the same answer 
from the NumPy function, so consider the linear system Ax = b with the augmented 
matrix form:

[𝐀𝐀|𝐛𝐛] = [
2 −6 6
2 3 −1
4 −3 −1

|
−8
15
19

] 

To solve this, we need to create two NumPy matrices, one for A and one for b to feed into 
the numpy.linalg.solve function and then run it:

import numpy

# Create A and b matrices
A = numpy.array([[2, -6, 6], [2, 3, -1], [4, -3, -1]])
b = numpy.array([-8, 15, 19])

# Solve Ax = b
numpy.linalg.solve(A,b)
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The numpy.linalg.solve(A,b) line runs an optimized version of Gaussian 
elimination and code returns:

array([ 5.,  1., -2.])

In other words, the code tells us the solution is (5, 1, -2), just as we found by hand, but this 
time we get the solution almost instantaneously!

Example – Inconsistent and dependent systems with 
NumPy
We said numpy.linalg.solve requires consistent systems, but a reasonable  
question is what happens if you give it matrices A and b corresponding to an inconsistent 
or dependent system, so let's try the inconsistent and dependent systems we considered in 
the first example of the chapter.

In the following code, we repeat the same idea as the previous example twice more, but 
this time, we solve the inconsistent and dependent problems we solved before:

import numpy

# inconsistent system
A = numpy.array([[2, 1], [6, 3]])
b = numpy.array([3, 3])

print(numpy.linalg.solve(A,b))

# dependent system
A = numpy.array([[2, 1], [6, 3]])
b = numpy.array([1, 3])

print(numpy.linalg.solve(A,b))

The output is as follows:

[-1.80143985e+16  3.60287970e+16]
[0. 1.]

For the inconsistent system, it returns some giant numbers in the order of 1016, but 
we know there is no solution mathematically, so this is meaningless. In the case of the 
dependent system, it returns (0, 1), which is a solution to the system, but it has infinitely 
many solutions.
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A key take-away from this example is that we should never implement numpy.linalg.
solve without carefully screening the coefficient matrix A we will feed into it because it 
will return nonsense or incomplete answers without giving us any sort of warning.

How can we test A? The theory required is beyond the scope of this book, but there is 
a number called a determinant that can be computed for a square matrix and there is 
a theorem called the Invertible Matrix Theorem that tells us a linear system is always 
consistent if the determinant of A is not 0. Therefore, a good practice is to verify that the 
determinant of A is nonzero with the numpy.linalg.det function before proceeding 
further. In the following code, we create a NumPy array A, compute the determinant, and 
print it: 

A = numpy.array([[2, 1], [6, 3]])
print(numpy.linalg.det(A))

This produces the following output:

-3.330669073875464e-16

This is a number in the order of 10-16, which is extremely tiny and suggests the 
determinant is effectively 0, which would indicate numpy.linalg.solve should not 
be used. In a practical implementation, we would want to check this first and output an 
error if the determinant is within 10-5 of 0 in order to account for rounding errors.

Where the numpy.linalg.solve method really shines is in larger linear systems of 
equations, which would be totally unreasonable to do by hand. The 3-by-3 linear system 
took a whole 2 pages to solve with Gaussian elimination. It would be almost unthinkable 
to solve a system of 10, 20, or 100 equations by hand! It turns out, however, that these are 
not difficult for NumPy.

Example – A 10-by-10 linear system (with NumPy)
It would be cumbersome to even write down a 10-by-10 linear system of equations,  
so we will rely on the short expression Ax = b, but which system will we solve? To save 
the trouble of making up a problem, suppose we just generate matrices A and b with 
uniformly random numbers.

It requires some deep mathematics beyond the scope of this book, but it can be 
shown such a system is consistent with probability 1, so it is highly likely to satisfy the 
requirements for numpy.linalg.solve():
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The following code will do three primary things:

• Generate A and b as 10-by-10 and 10-by-1 matrices, respectively, with elements 
selected uniformly at random from the interval [-5, 5] using numpy.random.
rand.

• Use numpy.linalg.solve to find a 10-by-1 matrix x that solves the system, and 
then calculates Ax – b using numpy.dot for the multiplication.

• Sum the absolute values of the 10-by-1 matrix Ax – b to verify the result is nearly 
0, possibly with some tiny error resulting from rounding errors, to confirm the 
solution is correct:

import numpy

numpy.random.seed(1)

# Create A and b matrices with random
A = 10*numpy.random.rand(10,10)-5
b = 10*numpy.random.rand(10)-5

# Solve Ax = b
solution = numpy.linalg.solve(A,b)
print(solution)

# To verify the solution works, show Ax - b is near 0
sum(abs(numpy.dot(A,solution) - b))

This returns the following output:
[ 0.09118027 -1.51451319 -2.48186344 -2.94076307  
  0.07912968  2.76425416 2.48851394 -0.30974375   
    -1.97943716 0.75619575]

1.1546319456101628e-14

As you can see, numpy.linalg.solve(A,b) finds that the solution to this 10-by-10 
system of linear equations is roughly (0.09, -1.51, -2.48, -2.94, 0.08, 2.76, 2.49, -0.31, -1.98, 
0.76).

Note that sum and abs are some common Python function for adding and finding the 
absolute values of elements of a matrix. The last line of code sums the absolute values 
of Ax – b to get a number of nearly 0. This tells us Ax – b is approximately 0, so we have 
confirmation that the solution is accurate, at least to 14 decimal places.
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Important note
The numpy.random.seed(1) command is used simply so that the code 
is reproducible for readers.

If you remove this line, the calls to numpy.random.rand will generate 
different random numbers so that it generates a different 10-by-10 linear 
system of equations and solves it.

This is a good practice for testing code with randomness.

Once again, this code runs almost instantaneously on a typical laptop, even though it 
solves a rather large system by the standards of what we can compute by hand. In fact, the 
performance of this function is truly extraordinary: it runs almost instantaneously even 
if we replace a 10-by-10 system with a 1,000-by-1,000 system. Indeed, it solves a linear 
system of 1,000 equations with 1,000 variables with sums of absolute errors in the order  
of 10-10 in almost no time!

Summary 
In this chapter, we covered a lot of ground! We began by taking the familiar idea of  
a linear equation in two variables and demonstrated that the set of points that satisfy the 
equation are exactly those that form a straight line. We then extended this to a system of 
two linear equations of two variables, which represent, geometrically speaking, two lines. 
A solution to the system is a point that satisfies not one, but both equations. Geometrically, 
this means a solution can only be a point of intersection of the two lines. As we know from 
elementary geometry, two lines must either be parallel, intersect, or coincide entirely. This 
characterizes three possible conclusions about solutions: a system must have no solutions 
(if they are parallel), one unique solution (if they intersect), or infinitely many solutions  
(if they coincide).

Then, the real fun started as we introduced systems of many linear equations and many 
unknowns, which are not so easily interpretable from a geometrical perspective, but they 
share this same property, that there must be zero, one, or infinitely many solutions.

We found these larger problems to be very cumbersome to solve with basic algebra, so 
we introduced a new mathematical structure to tackle this problem more efficiently: the 
matrix. We learned matrices behave similar to an ordinary rectangular array of numbers, 
but there is a special notion of multiplication of matrices that allows us to represent even 
large linear systems of equations in a compact, rectangular form that makes computation 
efficient.



138     Computational Algorithms in Linear Algebra 

After learning how to perform these matrix operations using NumPy functions,  
we proceeded to solve larger linear systems of equations. We learned an efficient method 
called Gaussian elimination that solves these systems, solved an example system of 
three linear equations with three variables, and then proceeded to learn to use NumPy's 
implementation of optimized Gaussian elimination in Python.

As we proceed through the remaining chapters, we will actually be using these methods 
very frequently, as linear algebra is critical for a wide array of applied problems that we will 
study, ranging from problems on trees and networks, cryptography, and regression analysis, 
to image processing and principal component analysis.

The next chapter is the first in a sequence of chapters based on tree, graph, and network 
structures, which are incredibly important for modeling many things, such as decision 
trees that guide helpdesk workers through best practices, linking structures of the web, 
and computer networks. In this next chapter, we define these structures, learn what they 
commonly model, use Python to store them efficiently, learn how to use linear algebra to 
find some features of the structures, and examine some key mathematical results in the 
area of graph theory with implications for computer science.



7
Computational 

Requirements for 
Algorithms

Algorithms that solve useful problems are at the heart of computer science, but an 
algorithm must not only be proven to work to be practical. They may take too long 
to run with our computational resources, or it may require storage of more data than 
our resources allow. This chapter is dedicated to finding the amount of time and space 
required to run algorithms; in short, the computational complexity of algorithms when 
it comes to time and space requirements to run a certain algorithm. We will focus on 
the complexity of foundational control structures and popular exemplar algorithms of 
common classes of time and space complexity. Different algorithms will be implemented 
using Python and the trade-off when it comes to runtime, computational resources, and 
suchlike will be discussed.

By the end of this chapter, you should have learned about different algorithms, their 
computational complexities, runtime, and the space required. 
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In this chapter, we will be covering the following topics:

• Computational complexity of algorithms

• Complexity of algorithms with fundamental control structures

• Complexity of common search algorithms

• Common classes of computational complexity

Important Note
Please navigate to the graphic bundle link to refer to the color images for  
this chapter.

Computational complexity of algorithms 
In this section, we will learn about what algorithms are, the complexity of algorithms, 
and what they mean in terms of time and space and Big-O notation (compact notation 
for classifying the time and space needed for an algorithm). By the end of this section, 
you should have a good understanding of what algorithms are and their characteristics, 
such as complexity, and be able to determine the Big-O notation for the complexity of 
algorithms. 

Algorithms are a step-by-step procedure/instruction to solve a problem or to obtain  
a desired output. They can be implemented in any programming language. Some of the 
important categories of algorithms from a data structure point of view are as follows: 

• Search: Used to search for an item in a data structure 

• Sort: Used to sort items in a required order 

• Insert: Used to insert items into a data structure 

• Update: Used to update an existing item in a data structure 

• Delete: Used to delete an existing item in a data structure 

Let's try out some of these algorithms in Python. We will perform the following tasks,  
for example: 

Step 1: Ask the user to input the name of their favorite fruit.

Step 2: Append the user input fruit name to a pre-existing list of fruit names.

Step 3: Update the list and display the new list. 
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Step 4: Now we will delete a selected element from the list; the user inputs the name of the 
fruit they want to delete (Note: the name entered is case sensitive).

Step 5: Update the list and display the new list:

#Type of algorithm - inserting new element to pre-existing list

fruit_name = ["Jackfruit", "Honeydew", "Grapes"]
user_input1 = input("Please enter a fruit name: ")
fruit_name.append(user_input1)
print('The updated list is: ' + str(fruit_name))

#Type of algorithm - deleting element from list

user_input2 = input("Please enter the name of the fruit you 
want to delete: ")
fruit_name.remove(user_input2)
print('The updated list is: ' + str(fruit_name))

Output: 

Please enter a fruit name: Apple
The updated list is: ['Jackfruit', 'Honeydew', 'Grapes', 
'Apple']
Please enter the name of the fruit you want to delete: Apple
The updated list is: ['Jackfruit', 'Honeydew', 'Grapes']

Process finished with exit code 0

In the preceding example, we have learned how to write an algorithm and display the 
desired results. We first added the name of a fruit of our choice to the fruit_name list, 
and then deleted a fruit name from the same list. 

An algorithm must satisfy the following criteria in order to be called an algorithm: 

• Input: It should have zero or more well-defined inputs.

• Output: It should have one or more well-defined outputs; often, this is the desired 
end product of the algorithm. 

• Finiteness: It should terminate after a finite number of steps. While using loops,  
it should be ensured that the algorithm either ends after a certain number of steps 
or when the desired output is achieved (in a finite number of steps).
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• Feasibility: It should be feasible with the computing resources available.

• Unambiguous: The instructions should be clear and have only one meaning with 
clearly defined inputs and outputs.

The following diagram shows how a problem can be solved by making use of multiple 
algorithms. However, the ideal way to solve any problem will be to choose the most 
efficient algorithm:

Figure 7.1 – Multiple algorithms to solve a problem

Despite there being multiple algorithms to solve a problem, our aim should be to find the 
most efficient way (fewer requirements in terms of time and space) to do the same: 

 

Figure 7.2 – Time and space complexity comparison for different algorithms
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Oftentimes, there are multiple ways to solve a problem. However, we need to find the most 
efficient way to achieve this. To do this, we need to be able to quantify the performance 
of the different algorithms used and choose the best one. There are two things that are 
crucial while comparing the performance of algorithms, namely: 

• Time required: This quantifies the amount of time required to run an algorithm  
to its completion as a function of length of the input.

Time requirements can be defined as a numerical function F(n), where F(n) is 
measured as the number of steps, provided all steps consume the same amount  
of time. 

Let's say that the addition of two bits takes c seconds, hence, if we try to add n-bit 
integers, it will take F(n) = n * c seconds. Hence, we can conclude that F(n) has  
a linear growth as the size of the input increases. 

• Space required: This quantifies the amount of memory space required by an 
algorithm in its life cycle. This required memory space has two components, 
namely: 

• Fixed part: The space required for storing data and variables that are independent 
of the size of the problem we are trying to solve. This would include the predefined 
variables, constants, program size, and suchlike. 

• Variable part: The space required for storing variables that are dependent on  
the size of the problem; for example, dynamic memory allocation, and recursion  
stack space. 

Both time and space complexity are a function of the length of the input. In simpler  
terms, if the input size is larger, the algorithm will take a longer duration and require  
more memory space to run as compared to if the input is smaller. It is important to keep 
in mind that other factors, such as the hardware, processors, and operating system, play  
a crucial role in determining time and space complexity. However, for our purposes,  
we will only consider the execution time of an algorithm for analyzing it. 

Let's try to understand the execution time with the help of an example. 

For this example, the user will input a number and the algorithm will try to compare the 
input with a pre-existing list and give out an output accordingly: 

Step 1: Ask the user to input a number.

Step 2: Compare the number with the numbers in the pre-existing list.
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Step 3: If the input number matches any number in the list, then output Yes or else  
No. Remember that the algorithm looks for the match chronologically, in other words,  
the input number will be compared with the first number of the list, then the second,  
and so on. 

Step 4: Display the time taken for the algorithm to run:

# a is a list containing some numbers
#We will compare the number input by user with the numbers in 
  # this list

import timeit
tic=timeit.default_timer()

a=[1,2,3,4,5,6,7,8]
INPUT = input("Please input a number of your choice: ")
number = int(INPUT)

for i in range(len(a)):
    if a[i]== number:
        print("Yes", end='  ')
    else:
        print("No", end='  ')
print()

toc=timeit.default_timer()
time_elapsed = toc - tic
print("The time elapsed for this computation is: " + str(time_
  elapsed) + "seconds")

Output: 

Please input a number of your choice: 1
Yes  No  No  No  No  No  No  No  
The time elapsed for this computation is: 2.3035541 seconds

Process finished with exit code 0

You can run the code and input a number of your choice and check for the runtime of 
the algorithm. For this algorithm, we had to import a Python library called timeit for 
measuring the time required for the algorithm to run. Documentation regarding the 
timeit library can be found here: https://docs.python.org/3/library/
timeit.html.

https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
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An important thing to keep in mind is that the user input is being converted into an 
integer before comparing it with the integers in the array. If this is not done, then the 
algorithm would be comparing a string (input number) with integers (list) and hence 
would output only Nos. 

Understanding Big-O Notation
Next, let's learn about Big-O Notation. Learning about this notation is crucial since it is 
used to describe the performance/complexity of an algorithm. This notation can be used 
to establish the relationship between the input to the algorithm and the steps required to 
execute the algorithm. Notation: O (relationship between the input and steps taken by the 
algorithm – denoted by "n").

For example: If there is a linear relationship between the input and the steps taken by the 
algorithm, then the Big-O notation will be O(n). Similarly, for a constant relationship, the 
notation will be O(constant). 

The most frequently used Big-O notations are as follows: 

Figure 7.3 – Big-O notation for different types of algorithms

We will now look into some of the complexities noted in the preceding table:

• Constant complexity O(constant):

The complexity of an algorithm is said to be constant if the steps required to execute 
the algorithm is constant despite the size of the input. 
Let's understand constant complexity with the help of an example in Python.  
We will make the algorithm do the following things: 
Step 1: Input a list.
Step 2: Calculate the cube of the second item on the list:

#Constant complexity function

def constant_complexity(list):
    output = list[1]* list[1]* list[1]
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    print("The end result after running the algorithm is: 
      " + str(output))

constant_complexity([1,2,3,4,5,6,7])

Output: 
The end result after running the algorithm is: 8

From the preceding example, we see that despite the length of the list that was 
input into the algorithm, it only does one thing – calculates the cube of the second 
item on the list (index numbers start from 0 in Python). Hence, the order of the 
algorithm is O(2) since the algorithm concludes in two steps despite the size of the 
input. 

• Linear complexity O(n):

The complexity of an algorithm is said to be linear if the steps required to execute 
the algorithm grow linearly with the size of the input. 

Let's understand constant complexity with the help of an example in Python.  
We will make the algorithm do the following things: 

Step 1: Input a list.

Step 2: Count the number of iterations taken to go through the entire list.

Step 3: Print the number of iterations:
#Linear complexity

def linear_complexity(list):
    for i in list:
        print("Iteration number " + str(i))

linear_complexity([1,2,3,4,5,6,7])

Output: 
Iteration number 1
Iteration number 2
Iteration number 3
Iteration number 4
Iteration number 5
Iteration number 6
Iteration number 7

Process finished with exit code 0
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From the preceding example, we can see that the number of iterations goes up as the 
length of the input goes up since the algorithm goes through each of the numbers 
in the input list – this is a linear relationship. Hence, we can represent this as O(n), 
where n represents the number of steps taken by the algorithm. 

• Quadratic complexity O(n2):

The complexity of an algorithm is said to be quadratic if the steps required to 
execute the algorithm grow quadratically with the size of the input. We will make 
the algorithm do the following things: 

Step 1: Input a list.

Step 2: Go through two for loops: 
#Quadratic complexity

def quadratic_complexity(list):
    count = 0
    for i in list:
        for j in list:
            count += 1
            print(str(count) + "\t|First for loop 
              iteration: " + str(i), '\t|',
                "Second for loop iteration:" + str(j))

quadratic_complexity([1,2,3,4])

Output: 
1    |First for loop iteration: 1   | Second for loop 
      iteration: 1
2    |First for loop iteration: 1   | Second for loop 
      iteration: 2
3    |First for loop iteration: 1   | Second for loop 
      iteration: 3
4    |First for loop iteration: 1   | Second for loop 
      iteration: 4
5    |First for loop iteration: 2   | Second for loop 
      iteration: 1
6    |First for loop iteration: 2   | Second for loop 
      iteration: 2
7    |First for loop iteration: 2   | Second for loop 
      iteration: 3
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8    |First for loop iteration: 2   | Second for loop 
      iteration: 4
9    |First for loop iteration: 3   | Second for loop 
      iteration: 1
10   |First for loop iteration: 3   | Second for loop 
      iteration: 2
11   |First for loop iteration: 3   | Second for loop 
      iteration: 3
12   |First for loop iteration: 3   | Second for loop 
      iteration: 4
13   |First for loop iteration: 4   | Second for loop 
      iteration: 1
14   |First for loop iteration: 4   | Second for loop 
      iteration: 2
15   |First for loop iteration: 4   | Second for loop 
      iteration: 3
16   |First for loop iteration: 4   | Second for loop 
      iteration: 4

When the for loop starts, the control of the program is first on the outer for loop. 
The first index in the list is 1. After this, the control of the program moves into 
the inner loop for execution. Here, each of the values in the list ([1,2,3,4]) is 
iterated over one at a time until the end of the list. j holds the value of 1 in the first 
iteration of the inner for loop followed by the execution of print, which outputs 
the number of iterations – First for loop iteration:1 | Second for 
loop iteration: 1, and moves to the next value in the list (which is 2).The 
control of the program is moved back to the outer loop once the execution of the 
inner loop is complete. This process is repeated until both the inner and outer loops 
have been executed completely. 

The total number of steps performed is n * n (for this case, the number of steps is 
16), where n is the number of items in the input list. 

The number of iterations will go up as the length of the input goes up, but in a 
quadratic manner – this is a quadratic relationship. Hence, we can represent this as 
O(n2), where n represents the number of steps taken by the algorithm. 

• Complexity of complex functions:

Next, we will look at an algorithm that does multiple things and try to figure out its 
Big-O notation. We will make the algorithm do the following things: 

Step 1: Print "Hello World!" six times à O(6), since six steps are taken by the 
algorithm for this part.



Understanding Big-O Notation     149

Step 2: Use a for loop to go through the elements of a list and print them out  
à O(n), since this is linear complexity and the number of steps taken is dependent 
on the number of elements in the list. 

Step 3: Use a second for loop to go through the elements of a list and print 
them out a O(n), since this is linear complexity and the number of steps taken is 
dependent on the number of elements in the list 

The overall complexity of the algorithm is O(6) + O(n) + O(n) = O(2n) + O(6):
#Complex function complexity

def complex_func (list):
    count = 0
    for i in range(6):
        count += 1
        print("Step: " + str(count) +  " \t Hello 
          World!")

    for j in list:
        count += 1
        print("Step: " + str(count) +  " \t " + str(j))

    for k in list:
        count += 1
        print("Step: " + str(count) +  " \t " + str(k))

complex_func([1,2,3,4])

Output: 
Step: 1     Hello World!
Step: 2     Hello World!
Step: 3     Hello World!
Step: 4     Hello World!
Step: 5     Hello World!
Step: 6     Hello World!
Step: 7     1
Step: 8     2
Step: 9     3
Step: 10    4
Step: 11    1
Step: 12    2
Step: 13    3
Step: 14    4
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As you can see, the algorithm took 14 steps to complete the 3 tasks we wanted it 
to do. The complexity of the algorithm was found to be O(2n) + O(6). However, 
when the size of the input list grows and becomes extremely large, then the constant 
become insignificant. This is the case because twice or half of infinity is still infinity. 
We can ignore the constants and the order of the algorithm will be O(n) when the 
input list is extremely large. In short, we drop the non-dominant terms and the 
coefficients. 

When do constants matter? 

As regards the preceding example, we arrived at the conclusion that the order of the 
algorithm is O(n) and dropped the constant terms, (O(6)). This is applicable when the 
problem size gets sufficiently large; the constant term does not matter. However, this 
means that two algorithms can have the same Big-O time complexity, even though one 
is always faster than the other. For example, suppose algorithm 1 requires n2 time, and 
algorithm 2 requires 5*n2 + n time. For both algorithms, if we ignore the constant terms, 
the Big-O notation is O(n), even though algorithm 1 is faster than algorithm 2. In this 
case, the constants and low-order terms do matter in terms of which algorithm is faster. 

However, it is important to note that constants do not matter in terms of the question of 
how an algorithm "scales" – in other words, how the algorithm's execution time changes 
when the problem size doubles or triples. Although an algorithm that requires n2 time will 
always be faster than an algorithm that requires 10*n2, for both algorithms, if the problem 
size doubles, the actual time will quadruple. 

When two algorithms have different Big-O time complexity, the constants and low-order 
terms matter only when the problem size is small. For example, if large constants are 
involved, then the linear time algorithm will be faster than the quadratic time algorithm:

Figure 7.4 – Linear and quadratic complexity for different input sizes

The preceding table shows the value of 100*n (linear in n) and the value of n2/100 
(quadratic in n) for some value of n. For values of n less than 104, the quadratic time is 
smaller than the linear time complexity. However, as the value of n increases beyond 104, 
the time complexity of quadratic is greater than the linear time complexity. 
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Now that we know how to come up with Big-O notation for an algorithm, let's represent 
this notation in a graph to make it clearer:

Figure 7.5 – Size of input versus the number of steps taken by an algorithm for different complexities

From the preceding graph, we can see how the number of steps taken by an algorithm for 
its execution is dependent on the size of the input for different kinds of time complexities. 

In this section, we learned about Big-O notation and how to it calculate it for different 
complexities. In the next section, we will continue our discussion by learning about the 
complexity of algorithms with fundamental control structures. 

Complexity of algorithms with fundamental 
control structures 
In this section, we will learn about a crucial concept known as control structures. By the 
end of this chapter, you should have basic knowledge of control structures, their types, 
how they work, and their computational complexity. 
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Control structures are used to specify the direction of flow in programs. They are used to 
analyze and choose the direction in which the program flows, based on some parameters 
or conditions. In short, control structures are just the decision making that the computer 
makes. There are three basic types of fundamental control structures: 

• Sequential flow 

• Selection flow 

• Repetitive flow 

Let's understand each of these in turn. 

Sequential flow
In this kind of flow, the algorithm flow depends on the series of instructions given to the 
computer, and the steps are executed in an obvious sequence. The sequence might be 
given by means of numbered steps explicitly. Also, it implicitly follows the order in which 
the steps are written. Most of the processing will generally follow this elementary flow 
pattern:

Figure 7.6 – Sequential flow

The complexity of this sequential flow is constant, since complexity is defined by the 
number of steps in an algorithm. 
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Selection flow
This type of flow involves several conditions or parameters that decide on one out of the 
several written steps. The structures that use these types of logic are known as conditional 
structures:

Figure 7.7 – Selection flow

A commonly used conditional in Python for selection flow is if-elif-else.

Let's recall some of the logical conditions used in mathematics that the Python 
programming language supports: 

• Equals: a==b 

• Not Equals: a!= b 

• Less than: a < b 

• Less than or equal to: a <= b 

• Greater than: a > b 

• Greater than or equal to: a >= b 
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Now that we have recalled some of the basic logical conditions, we can now apply these 
conditionals to better understand if-elif-else conditionals. 

• if-elif-else:

Decision making is required when we want to execute a certain section of the code 
if a certain condition is satisfied. The if-elif-else statement is used in Python 
for decision making. 

Let's see how it works with the help of an example. We will do the following for this 
example: 

Step 1: We will define two variables, 'a' and 'b', and assign a value to each  
of them.

Step 2: If a > b, then the algorithm will output something stating that a is greater 
than b.

Step 3: If a < b, then the algorithm will output something else stating that a is less 
than b.  

Step 4: If a = b, then the algorithm will say that both numbers are equal:
#Complexity of if-elif-else statements

a = 10
b = 5
if b > a:
    print("b is greater than a")
elif b < a:
    print("b is less than a")
else:
    print("a and b are equal")

Output: 
b is less than a

Process finished with exit code 0

The Big-O notation for if-elif-else conditionals is O(n) because in the 
worst case, the algorithm must go through all the n steps. If step 2 is true, then the 
algorithm will terminate after a single step, but if both steps 2 and 3 are false, then 
the algorithm will terminate after executing all the conditional statements. 
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Repetitive flow
This type of flow is used in the case of looping – where we are trying to run a piece of code 
a desired number of times or until a specified condition is applicable. There are two types 
of repetitive flow; let's discuss them in detail here: 

• Repeat-For Structure – For loop:

A for loop is used to iterate over a sequence that can be a list, tuple, dictionary,  
a set, string, and so on. With this loop, we can execute a set of statements, once for 
each item in a list, tuple, array, and suchlike: 

Figure 7.8 – Repetitive flow (for loop)
In the preceding diagram, two variables, A and B, are set to have a certain value.  
The for loop is run until A is less than B and the loop terminates once the 
condition A > B is true. After going through the first iteration of the loop, the  
value of A is incremented by the number X. 
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Let's try to understand for loops better by going through an example in Python. 
For this example, we will perform the following steps: 

Step 1: Print the list of fruit names :
#For loop

fruits = ["apple", "mango", "orange", "banana", 
  "pomegranate"]
for x in fruits:
    print(x)

Output: 
apple
mango
orange
banana
pomegranate

In the for loop, we are using x to represent the positions of the fruit names in 
the list fruits. For example, when x = 0, we are referring to fruits[0], which 
represents the location of apple. Similarly, fruits[2] = "orange". It is 
important to remember that indices in Python start from 0. Here, we start the loop 
with x = 0, it prints the first element in the fruits list, then x is incremented to 1, 
where the second element in the list is printed out, and so on. The complexity of this 
for loop is O(n). The loop executes n times (n being equal to the number in the 
list), so the sequence of statements also executes n times. Since we assume that the 
statements are of the order O(1), the total time for the loop is n* O(1) = O(n). 

Now that we have an idea regarding a for loop, let's move on to learn about nested 
for loops and their complexity. So, what are nested loops? A nested loop is a loop 
inside a loop. The inner loop will be executed one time for each iteration of the 
outer loop' 

In the previous example, we just printed out the names of the fruits. Now, let's add 
some adjectives to these fruit names by making use of nested for loops. 

When the for loop starts, the control of the program is first on the outer for loop. 
The first adjective in the adjectives list, in this case tasty, is set into the value of y. 
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After this, the control of the program moves into the inner loop for execution. Here, 
each of the values in the fruits list is iterated over one at a time until the end 
of the list. x holds the value of apple in the first iteration of the inner for loop 
followed by the execution of print(y, x), which outputs tasty apple and 
moves to the next value in the fruits list. The control of the program is moved 
back to the outer loop once the execution of the inner loop is complete, where the 
next value in the adjectives list is set as the value of y and the inner loop executes 
again, leading to the values to be printed as displayed in the output:

#Nested for loop

fruits = ["apple", "mango", "orange", "banana", 
  "pomegranate"]
adjectives = ["tasty", "juicy", "fresh"]

foryin adjectives:
    for x in fruits:
        print(y, x)

Output: 
tasty apple
tasty mango
tasty orange
tasty banana
tasty pomegranate
juicy apple
juicy mango
juicy orange
juicy banana
juicy pomegranate
fresh apple
fresh mango
fresh orange
fresh banana
fresh pomegranate
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In the case of nested for loops, the complexity of the first loop is O(n) and that 
of the second loop is O(m). Since we do not know which one is bigger (for our 
example, we know that the inner loop was bigger), we can say that the complexity is 
O(n+m). This can be written as O(max (n,m)). 

• Repeat-While Structure – While loop:

With the while loop, we can execute a set of statements if a certain condition is true, 
until it stops being true: 

Figure 7.9 – Repeat-While structure (while loop)
Let's try to understand how to implement a while loop in Python. We will perform 
the following steps for this example: 

Step 1: Set an index to a constant value.

Step 2: Print an index until a certain criterion is satisfied.

Step 3: Increment the index: 
#While loop

i = 1
while i < 10:
    print("Step: " + str(i) + " The condition is 
      satisfied")
    i += 1
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Output: 
Step: 1 The condition is satisfied
Step: 2 The condition is satisfied
Step: 3 The condition is satisfied
Step: 4 The condition is satisfied
Step: 5 The condition is satisfied
Step: 6 The condition is satisfied
Step: 7 The condition is satisfied
Step: 8 The condition is satisfied
Step: 9 The condition is satisfied

As regards the preceding example, we set the index i = 1 and use a while loop to 
print the statements telling us the step number and whether the condition i < 10 
is satisfied. As you can see, the loop ended when the value of i = 10, and hence the 
algorithm stops at Step 10. 

The complexity of the while loop is O(n). This is because the complexity of  
a while loop depends on the loop control variable ( which is i for this example) 
and how this variable is changing because the number of times the statements inside 
a loop get executed are dependent on this variable's behavior. For our example 
(above), the index i is being incremented linearly, in other words, the value of i 
increases by 1 for every step taken by the algorithm. 

Now that we have learned about the complexity of common control structures and how 
the complexity is calculated, we will move on to study the complexity of common search 
algorithms in the next section. 

Complexity of common search algorithms 
Searching is a technique of selecting a certain portion of a dataset based on a certain set 
criterion. We use search algorithms in our day-to-day life when we search for something 
on the web that meets a certain word or phrase of our choice. Hence, to be able to search  
a data structure for required data is crucial in developing different kinds of applications. 

In this section, we will discuss two search algorithms that are used in Python: 

• Linear search algorithm

• Binary search algorithm 
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Linear search algorithm 
This is the simplest kind of search algorithm to a sequential search problem. It simply 
checks the items in sequence until the desired item is found. This kind of search algorithm 
has already been illustrated using Example 2 (where we calculate the execution time of  
an algorithm). Let's look at a similar example to reinforce it, but this time we will write  
a function to carry out the linear search. 

What is a Python function? 

A function is a chunk of code that runs only when it is called. The user can pass inputs, 
known as parameters, into the function and then the function is executed to return  
a result. 

For this example, we will be doing the following: 

Step 1: Write a function that contains a predefined set of lists of numbers. 

Step 2: Pass an input (number to compare to the list) into this function. 

Step 3: Print out the results. 

This will return True if there is a match.

This will return False if there is no match:
def linear_search(input):
    lists = [1, 2, 3, 4, 5, 6, 7, 8]
    number = int(input)

    for i in range(len(lists)):
        if lists[i] == number:
            print("True", end='  ')
        else:
            print("False", end='  ')
    print()

INPUT = input("Please input a number of your choice: ")
linear_search(INPUT)

Output: 
Please input a number of your choice: 5
False  False  False  False  True  False  False  False  
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Now that we know how a linear search algorithm works, let's consider the best-, worst-, 
and average-case scenarios: 

• Best Case: This is the case that leads to the minimum number of steps executed. 
In the case of a linear search, the best-case scenario occurs when the target value 
(value that we are looking for) is present at the first index (0). The number of steps 
executed in this scenario is 1, hence the time complexity is a constant and the Big-O 
notation is O(1). 

• Worst Case: This is the case when the algorithm takes the maximum number of 
steps and, hence, the maximum amount of time. This scenario occurs when the 
algorithm is searching for an element that is present at the last index (n, let's say). 
The time complexity for this case will be O(n) since the algorithm needs to take n 
steps (increasing linearly) before its termination. 

• Average Case: The average case time can be found by dividing all the possible 
case timings (best and worse) by the number of cases. Hence, the average time 
complexity for a linear search is O((n+1)/2). 

Now that we have learned about best-, average-, and worst-case scenarios for linear 
search algorithms, let's learn about what these scenarios will be like for a binary search 
algorithm.

Binary search algorithm 
This search algorithm requires a sorted sequence of a list and is based on the divide 
and conquer philosophy. It checks for the value in the middle of the list, repeatedly 
discarding the half of the list that contains values that are either all larger or all smaller 
than the desired value. If the midpoint contains the target, the algorithm immediately 
returns true. If this is not the case, then we determine if the target is less than the 
element at the midpoint or greater. If it is less, the high marker is adjusted to be one less 
than the midpoint, and if it is greater, we adjust the low marker to be one greater than 
the midpoint. In the next iteration of the loop, the only portion of the sequence that is 
considered is the elements between the low and high markers. This process is repeated 
until we find the target element, or the low marker becomes greater than the high marker. 
This is the termination condition and occurs when the target element is not found in the 
sorted sequence. 

Let's look at an example to make this clearer. We will perform the following steps to come 
up with an algorithm: 

list = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
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It is important to remember that the list needs to be sorted before a binary search is 
carried out: 

Step 1: Compare the target value with the middle element of the list. 

Step 2: If the middle element of the list matches the target element, then the index 
of the middle element is returned.

Step 3: If the target value is greater than the middle element in the list, then the 
target value can only lie in the right sub-list after the middle element.

Step 4: Otherwise (if the target value is less than the middle element), we look for  
a match in the sub-list that lies toward the left of the middle element:

# Returns index of target (x) if present in the list
def binary_search(list, l, r, target_value):
    # Check base case
    if r >= l:

        mid_index = l + (r - l) // 2

        # If target element matches with the mid-element 
          # of the list
        if list[mid_index] == target_value:
            return mid_index

        # If element is smaller than mid-element, then it 
          # can only be present in left sublist
        elif list[mid_index] > target_value:
            return binary_search(list, l, mid_index - 1, 
              target_value)

        # Else the element can only be present in right 
          # sub-list
        else:
            return binary_search(list, mid_index + 1, r, 
              target_value)

    else:
        # Element is not present in the array 
            return -1

# Test list
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list = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
target_value = 100

# Function call
result = binary_search(list, 0, len(list) - 1, target_
  value)

if result != -1:
    print("Target element is present at index " + 
      str(result) + " of the list")
else:
    print("Target element is not present in list")

Output: 
Target element is present at index 9 of the list

Now that we know how a binary search algorithm works, let's consider the best-, worst-, 
and average-case scenarios:

• Best Case: This is the case that leads to the minimum number of steps executed. 
In the case of a binary search, the best-case scenario occurs when the target value 
(value that we are looking for) is present at the middle index of the list we are 
comparing with. The time complexity is a constant and the Big-O notation is O(n). 

• Worst Case: This is the case when the algorithm takes the maximum number of 
steps and, hence, the maximum amount of time. This scenario occurs when the 
algorithm is searching for an element that is not present in the list where we are 
looking to locate the target element. The time complexity for this case will be O(log 
n). This Big-O notation can be explained by the fact that the search keeps breaking 
the list into halves in each iteration. How many times do we have to divide a sub-list 
by 2 until we get our desired index? We can write this mathematically as follows: 

Taking a logarithm on both sides, we get: k = log(n)/log(2).

 In the preceding computations, we have the following: 
• n is the number of terms in the list.

• k is the number of times the sub-lists are divided into further smaller sub-lists.

𝑛𝑛
2𝑘𝑘 = 1 

 = 2  
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• Average Case: The average case time can be found by dividing all the possible 
case timings (best and worse) by the number of cases. Hence, the average time 
complexity for a linear search is O(log n):

Figure 7.10 – Best, worst, and average case comparison for linear and binary searches

The advantage of binary searches is that not every item in the sequence must be examined 
before determining that the target is not in the list, which is the worst-case scenario. Since 
the sequence is sorted first, before proceeding with the binary search, each iteration of the 
loop can eliminate half of the values. In this way, the input size (the size of the list used for 
comparison) is repeatedly reduced by half during each iteration of the loop. 

The binary search algorithm is more efficient as compared to a linear search since its 
worst-case time complexity is O(log n), which is better than O(n) for a linear search. 

In this section, we learned about the computational complexity of the two types of 
search algorithms used in Python, namely, linear and binary search algorithms. We also 
compared their best, worst, and average time complexity case scenarios. 

Common classes of computational complexity 
In this section, we will learn about some other common classes of computational 
complexity other than the constant, linear, quadratic, and suchlike complexities that have 
been discussed in the previous sections. 

"Pretty well everybody outside the area of computer science thinks that if 
your program is running too slowly, what you need is a faster machine." 

– Rod Downey and Mike Fellows 
However, this is not the case, since some problems might require a brute-force search 
through a large class of cases that exponentially increases the number of steps required 
to solve the problem. An important distinction is often made between a tractable and 
intractable problem: 

• Tractable problems make use of algorithms that take polynomial time (P) for 
their execution – time complexity is of the order O(nc), where c is any constant that 
belongs to the natural numbers.
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Feasibly decidable kinds of problems are problems that can be solved by  
a conventional Turing machine in a number of steps that is proportional to  
a polynomial function of the size of the input.

• Intractable problems make use of algorithms that require exponential time for their 
execution – time complexity is of the order O(2n) or similar. 

While this is the theoretical distinction, this might not always correspond to which 
problems can be solved faster in practice. For example, an exponential algorithm running 
in time 2n/100 might behave better than a polynomial algorithm running in time n1000. 
The exponential functions might be faster for a very small number of steps; however, the 
polynomial time complexity will be faster when n is very large. Going back to Figure 6.4, 
we can see that the step size (and hence the time complexity) increases very rapidly for an 
exponential as compared to polynomial algorithms. 

To put things into perspective, let's compare the run times of polynomial and exponential 
time complexities for different sizes of input and a step size of 1010 per second: 

Figure 7.11 – Time taken by different algorithms for different step sizes

A third class of complexity class exists, called the NP type – non-deterministic 
polynomial time. This type consists of the problems that can be correctly decided by 
some computation of a non-deterministic Turing machine in a number of steps that is 
a polynomial function of the size of the input. These are the types of problems that are 
verifiable in polynomial time. 
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A famous conjecture states that P is properly contained in NP – in other words, P Í NP:

 

Figure 7.12 – P is properly contained in NP

Demonstrating the non-coincidence of these complexity classes remain important open 
problems in complexity theory. 

In this section, we learned about some more complexity classes, including P and NP. 
We also looked at what tractable and intractable problems are and how exponential time 
complexity problems are computationally inefficient when the input size increases. 

Summary 
In this chapter, we learned about computer algorithms, and their complexities (time and 
space). We also discussed how these complexities vary based on the size of the input. 
We investigated the different types of time complexities, including constant, linear, 
quadratic, cubic, and exponential, along with their Big-O notations. We then looked into 
the complexities of fundamental control structures and discussed these with regard to 
three fundamental flow types – sequential, selection, and repetitive flow. The complexities 
of linear and binary search algorithms were discussed in addition to the best-, worst-, 
and average-case scenarios. Toward the end, we learned about some other kinds of time 
complexity types, such as P and NP.  

With the knowledge acquired in this chapter, you will be well equipped to choose the right 
kind of algorithm to solve a certain problem. In the next chapter, we will be looking into 
terminology and notation for trees, graphs, and networks, as well as directed graphs and 
networks. 
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8
Storage and Feature 

Extraction of 
Graphs, Trees, and 

Networks
The structures we will learn about in this chapter all stem from the idea of a graph, which 
is a pair of sets of nodes (called vertices) and connections (called edges) linking nodes 
together. As we will see in this chapter and the following chapters graphs, and their 
variations are useful for modeling many real situations and solving practical problems  
in computer and data sciences.

The following topics will be covered in this chapter:

• Understanding the terminology and notation of graphs, trees, and networks

• An overview of some ways graph and network models are used in real problems

• Efficient storage of graphs of networks in Python

• Using Python to extract features of graphs or networks
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By the end of the chapter, you should be able to differentiate between graphs, trees, 
networks, and directed versions of them, be familiar with common applications of these 
structures as models for practical problems, efficiently store these structures in computer 
memory with Python, and use linear algebra to determine certain features within these 
structures.  

Important Note
Please navigate to the graphic bundle link to refer to the color images for  
this chapter.

Understanding graphs, trees, and networks
We will start by defining graphs mathematically, along with any other related definitions, 
before moving on to consider common ideas about trees, networks, and directed graphs.

Definition: graph
A graph G has two parts. First, V = {v1, v2, …, vk} is a set of vertices, also known as nodes. 
Second, E is a set of edges, each of which connects some pairs of nodes. We represent  
a graph as G = (V, E). 

An edge is represented mathematically as a set made up of the two vertices it connects.  
If there is an edge connecting nodes vi and vj, we will call this edge eij = {vi, vj} and we say 
it is incident to vertices vi and vj.

An example of a graph follows with vertices V = {v1, v2, v3, v4, v5, v6} and edges 
 E = {e12, e13, e15, e23, e24, e26, e34, e35, e45}:

Figure 8.1 – A graph with six vertices, and nine edges connecting them
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We can see, for example, the edge connecting vertex 3 (v3) to vertex 4 (v4) is called e34. 
Note that, in general, it is common to leave out the edge labels from diagrams of graphs, 
but we can easily determine the name of each edge depending on which two vertices the 
edge connects.

Definition: degree of a vertex
A vertex vi has degree n if it has exactly n edges incident to it. Mathematically, we write 
d(vi) = n.

In other words, the degree of a vertex tells us how many edges are connected to the vertex. 
In the next example, we will count the degrees of each vertex in the graph from Figure 8.1.

Example: degrees of vertices
Consider the graph in Figure 8.1. We can easily find the degree of each vertex by counting 
the number of edges connected to it. We will find the following:

d(v1) = 3,      d(v2) = 4,      d(v3) = 4

d(v4) = 3,      d(v5) = 3,      d(v6) = 1

Notice the sum of the degrees of all the vertices is 3 + 4 + 4 + 3 + 3 + 1 = 18, which 
happens to be two times the number of edges in the graph. It turns out this is true in 
general, as we'll prove next.

Theorem: sum of degrees
The sum of the degrees of all vertices in a graph G = (V, E) equals twice the number of 
edges in G, 2|E|. If the number of vertices is |V| = n, this means

∑𝒅𝒅(𝒗𝒗𝒊𝒊)
𝒏𝒏

𝒊𝒊=𝟏𝟏
= 𝒅𝒅(𝒗𝒗𝟏𝟏) + 𝒅𝒅(𝒗𝒗𝟐𝟐) +⋯+𝒅𝒅(𝒗𝒗𝒏𝒏) = 𝟐𝟐|𝑬𝑬| .

Proof: An edge eij adds 1 to the degree of vi and adds 1 to the degree of vj. Therefore, each 
edge adds 2 to the sum of all degrees. 

This fact is something we will use later in the chapter when we will store graphs and 
related models in Python to check that our data structure makes sense.

Next, we'll consider a special sort of graph where there is only one way to traverse are 
called paths, which we define next.
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Definition: paths
A path is a graph P = (V, E) where V = {v1, …, vn} and E = {e12, e23, …, en-1, n}. The vertices v1 
and vn are called endpoints of the path.

Here is an example of a path that is a subgraph of G from Figure 8.1, where V = {v1, v2, v3, 
v4, v5} and E = {e12, e23, e34, e45}:

Figure 8.2 – On the left is the graph G; on the right is a path P taken from G

Next, we'll look at an idea closely related to paths – a graph where the starting vertex 
connects to the ending vertex, forming what is called a cycle.

Definition: cycles
If P = (V, E) is a path, then a cycle is a graph with the same vertex set while the edge set is 
E U {en1}. In other words, it is a path with one additional edge connecting the endpoints.

The following diagram, Figure 8.3, shows a cycle that is a subgraph of the graph G from 
Figure 8.1:

Figure 8.3 – A cycle that is a subgraph of G
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As we mentioned before, a cycle is just like a path except the starting and ending vertices 
are connected. In this case, that means we added the edge e15 connecting vertex 1 to vertex 
5 to the second graph from Figure 8.2.

With the idea of a cycle in hand, we can define trees, which are used anytime we want to 
create a hierarchy of objects such as operating systems, graphics, database systems, and 
computer networking.

Definition: trees or acyclic graphs
A tree or acyclic graph is a graph G = (V, E) that has no cycles.

The graph in Figure 8.4 is an example of a tree: 

Figure 8.4 – An acyclic graph (otherwise known as a tree)

Notice there is no way to form a path from a vertex to itself without traversing the same 
edge more than once. This is what it means to not have a cycle.

Next, we define networks, which are like graphs, but the edges each have weights that may 
correspond to distances between cities in Google Maps, the cost of traveling from one 
vertex to another given fuel prices, or the weights of a deep learning structure like a neural 
network. The mathematical definition abstracts away those specifics so we can focus on 
the underlying ideas, which will then apply to many different problems.
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Definition: networks
A network consists of three parts, N = (V, E, W). As with graphs, V is the set of edges and 
E is the set of edges. In addition, each edge has a real-valued weight. Mathematically,  

we will write the set of weights as 𝑊𝑊 = {𝑤𝑤𝑖𝑖𝑖𝑖 ∈ ℝ ∶ 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸}  and the weight of edge eij will 
be denoted by wij.

The following figure shows an example of a network with the same vertex and edge sets as 
the graph in Figure 8.1 but with weighted edges:

Figure 8.5 – A network with 6 vertices and 10 weighted edges

Just like the graph in Figure 8.1, this network has the vertex set V = {v1, v2, v3, v4, v5, v6} and 
the edge set E = {e12, e13, e14, e15, e23, e24, e26, e36, e46}, but it also has a set of weights given in 
the figure:

W = {w12, w13, w14, w15, w23, w24, w26, w36, w46} = {2, 1, 4, 1, 1, 1, 1, 2, 2}.

The weights of a network may correspond to many different things in different 
applications, but some common examples are the distance between vertices, the capacity 
of the links to carry traffic between vertices, or the cost of making a connection between 
vertices. We will discuss these applications further in the next section.

Next, we'll continue on to directed versions of graphs where the edges do not simply 
connect vertices but have a specific direction from one vertex to another.
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Definition: directed graphs
A directed graph, or digraph, G = (V, E) is a set of vertices V and a set of 
directed edges E, which is a subset of the Cartesian product of V with itself, 
𝐸𝐸 ⊂ 𝑉𝑉 × 𝑉𝑉 = {(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) ∶ 𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉} .
In contrast to (undirected) graphs, the edges here are ordered pairs, not just sets. The 
reason is that edges in this context have a direction. We call them directed edges.

In this context, e12 = (v1, v2), an edge going from v1 to v2, but not the other direction.  
An edge going from v2 to v1 would be written e21 = (v2, v1). In short, we have eij ≠ eji when 
we consider a directed graph. We will use arrows to the edges in diagrams of directed 
graphs. We can see an example in the following figure:

Figure 8.6 – A directed graph with 6 vertices and 11 directed edges

This digraph has the same six vertices as the previous graphs and its set of directed edges 
is E = {e13, e21, e26, e35, e42, e43, e45, e51, e53, e54, e66}

These are directed edges, so in some cases, we have two edges—one in each direction—
between two vertices; for example, e35 and e53.

We discussed graphs and then generalized that idea by allowing edges to have directions. 
Now, we have talked about networks, which are like graphs but with weights. In a similar 
way, we can also allow the weighted edges of networks to become directed, creating what 
are called directed networks.
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Definition: directed networks
A directed network N = (V, E, W) is a network with directed edges.

Example: directed network
In this case, |W| = |E| and W contains a weight for each directed edge, so the weight of 
edge e35 may be different than the weight of edge e53. For example, the edge going from 
vertex 3 to vertex 5 has weight w35 = 2, but the weight of the edge going from vertex 5 to 
vertex 3 is w53 = 1, so the weights need not be the same in each direction, as we can see in 
Figure 8.7:

Figure 8.7 – A directed network with 6 vertices and 11 directed, weighted edges

In the preceding figure, we have a directed network where each directed edge has a weight. 
The vertex set and edge set are the same as in Figure 8.6, but here, we also have the set  
of weights,

W = {w13, w21, w26, w35, w42, w43, w45, w51, w53, w54, w66} = {2, 1, 2, 2, 2, 3, 4, 3, 1, 1}

We will consider directed graphs and networks in some of the upcoming problems, but 
we will speak in the context of graphs and networks, not their directed variants unless it is 
otherwise specified.

Now that we have defined what graphs, trees, networks, and their directed variants are, 
we'll now consider a bit of terminology associated with these graph-based models in the 
next two definitions.
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Definition: adjacent vertices
In a graph G = (V, E), two vertices are called adjacent if an edge connects them. In other 
words, vi and vj are connected if eij ∈  E.

For example, in Figure 8.1, vertex v3 is adjacent to v1, v2, v4, and v5 because there are edges 
attaching v3 to each of those four vertices. However, it is not adjacent to v6 since there is no 
edge connecting v3 to v6.

Lastly, we'll consider the idea of connected graphs and connected components of graphs.

Definition: connected graphs and connected 
components
Let G = (V, E) be a graph. If G contains a path between every pair of vertices in V, then G 
is called a connected graph.

All the preceding figures are connected graphs because you can traverse some sequence of 
edges of the graphs to travel from any one vertex to any other vertex. This does not mean 
any two vertices are adjacent. Indeed, vertices v4 and v1 in Figure 8.1 are not adjacent to 
one another, but some paths exist in G between them—for example, from v4 to v5 to v1.

If a subgraph G' = (V', E') of the graph G is connected and none of its vertices are 
connected to vertices outside G, it is called a connected component of the graph G:

Figure 8.8 – A non-connected graph G with two connected components
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In the preceding figure, there are two subgraphs of G we would like to consider:

1. G1 = ({v1, v2, v6}, {e12, e26})

2. G2 = ({v3, v4, v5}, {e34, e35, e45})

If we choose a vertex from G1, there are no paths in G between this vertex and a vertex 
in the remainder of G (that is, in G2). The same would be true if we were to start with 
a vertex from G2 and try to find a path to a vertex in G1. This means G1 and G2 are 
connected components.

We can note G1 happens to be a tree, but not G2 since it contains a cycle.

These ideas of connectedness and connected components also apply to networks. For 
directed graphs of networks, these notions also exist, but a path in each direction—from vi 
to vj and from vj to vi—must exist between each pair of vertices for the directed graph  
or network to be called connected.

In this section, we have seen many new terms and structures—the basis for all of them 
is the graph, which is simply a set of vertices and edges connecting some of the vertices 
together. Then, we saw that trees are graphs that include no cycles and networks are 
graphs where each edge has a weight. Next, networks were shown to be like graphs but 
with the addition of numerical weights for each edge. Lastly, we looked at the ideas of 
directed graphs or networks where the edges have a specific direction. Rather than an 
edge simply attaching vertex v2 to vertex v3, we have directed edges that go from v2 to v3  
or go from v3 to v2 in directed graphs and networks. Throughout, we also encountered the 
ideas of degrees, paths, cycles, and connected graphs.

With all these new ideas in mind, let's take a look at some of the applications of these ideas 
in the real world!

Using graphs, trees, and networks
Graphs and the other similar structures we introduced in the previous section are versatile 
modeling tools. This section will be an overview of some of the most common areas where 
these structures are used in discrete mathematics. Note that some of these topics will be 
explored much more deeply in some forthcoming chapters.

In Chapter 9, Searching Data Structures and Finding Shortest Paths, we will learn how to 
search graphs (especially trees) to find certain features or characteristics. One application 
of these searches is in scheduling problems. For example, consider a directed graph where 
each vertex represents a task that needs to be done to complete a large project where a 
directed edge between task A and task B means task A must be completed before task B. 
In other words, the directed edge represents a dependency.
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Clearly, there should be no cycles since that would lead to an infinite loop of tasks to 
complete! This means the directed graph would be a directed tree. There is a whole area of 
study of directed trees, which are also commonly called directed acyclic graphs (DAGs).

Searching such a directed tree can allow us to sort the tasks into orderings that allow 
the whole project to be completed efficiently. For example, consider the following 
figure, which shows a directed graph with the tasks involved in washing a car and their 
dependencies:

Figure 8.9 – A directed graph for washing a car

This figure sorts the tasks into a very easily readable structure that clearly shows the steps 
in the project. In general, we may have many tasks, each with a list of dependent tasks 
that must occur first. If they are not so neatly sorted or if a project is especially complex, 
scheduling the tasks can seem like a nearly impossible task. Searching these graphs allows 
such ordering, which is of tremendous use in project management.
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Chapter 9, Searching Data Structures and Finding Shortest Paths, will look at the 
problems of finding minimum-weight paths between vertices in a network under various 
constraints. This is helpful for finding minimum-distance driving directions between 
two locations if weights represent distances between vertices, which may be cities or road 
intersections. In the following figure, we see the shortest path from v1 to v2 is highlighted 
in orange:

Figure 8.10 – The shortest path from v1 to v2

Note that there are many paths from v1 to v2:

• P1 = ({v1, v2}, {e12}), distance = w12 = 4

• P2 = ({v1, v2, v3}, {e13, e23}), distance = w13 + w23 = 3

• P3 = ({v1, v2, v3, v4, v5}, {e13, e24, e35, e45}), distance = w13 + w24 + w35 + w45 = 5

These are just a few of the paths from v1 to v2, but notice P2, the one highlighted orange in 
Figure 8.10, is the shortest path with a total distance of 3 units.

Another problem related to pathfinding is routing traffic through a computer network—
note the difference in the mathematical definition of a network given above and a network 
of computers. Networks in the mathematical sense sometimes model computer networks, 
but they can also model other things such as maps with roads connecting cities or an 
electrical grid connecting to all the customers in a geographical region.

One application of this problem is to find the cheapest way for an ISP to lay fiber optic 
cables to connect all the neighborhoods of customers they want to serve. We can see an 
example of a minimum spanning tree (MST) in the following figure:
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Figure 8.11 – On the left is N with the minimum spanning tree highlighted.  
The MST itself is on the right

We see that the MST is a connected subnetwork N' = (V, E', W') with the same vertex set 
as the full network N but with a minimum sum of weights. The sum of weights on the left 
is 15, but the sum of weights on the right is only 5.

As we have seen in this section, graphs, trees, and networks can model many types of 
problems in scheduling, routing problems, and minimum spanning trees. This is only  
a small sampling of the common uses of these mathematical structures.

We will dive more fully into these applications in the next three chapters, but we cannot 
simply look at pictures for graphs modeling real-life problems. They tend to be quite large 
with hundreds or thousands of vertices and edges. The complexity of large graphs quickly 
exceeds our ability to analyze them mentally. So, before we can accomplish useful analysis, 
we need to learn how to store graphs, trees, and networks in NumPy arrays, which we will 
learn about next.

Storage of graphs and networks
In this section, we'll learn about a few ways graph structures are commonly stored in 
computer memory and their benefits and drawbacks, including adjacency lists, adjacency 
matrices, and weight matrices.

Definition: adjacency list
For a graph G = (V, E), an adjacency list is an enumeration of the edges in a graph. In 
computer memory, we would store it as a list of pairs of vertex numbers.
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Definition: adjacency matrix
For a graph G = (V, E), an adjacency matrix for a graph is a binary matrix A = (aij). If eij ∈  
E, then the number in row i and column j is aij = 1. Otherwise, it is 0.

In other words, the value in the ith row and jth column of the adjacency matrix A, aij, is 1 if 
vertices vi and vj are adjacent. Otherwise, it is 0.

Example: an adjacency list and an adjacency matrix
For the graph G in Figure 8.1, we previously listed the edges as E = {e12, e13, e15, e23, e24, e26, 
e34, e35, e45}. The adjacency list will simply be a list of each of these edges by the vertices 
they connect:

L1 = [[1, 2], [1, 3], [1, 5], [2, 3], [2, 4], [2, 6], [3, 4], [3, 5], [4, 5]]

While this is quite compact, it actually contains enough to describe the whole graph. The 
only risk is that a vertex with degree 0 will not be represented in the adjacency list. In 
most applications, this is unimportant. Vertices with no edges attached are not typically 
very interesting, but a separate list of vertices can be stored separately if it is important to 
the problem you are trying to solve.

Probably more common are adjacency matrices. The following matrix is the adjacency 
matrix for the graph in Figure 8.1. Note that v1, …, v6 are not actually part of the matrix 
but are placed here as labels: 

Figure 8.12 – An adjacency matrix for the graph in Figure 8.1

Note, for example, that the number in the 4th row, 5th column is 1, which means v4 is 
adjacent to v5. To fill in the rest of the matrix, we use this same sort of logic to place a 1 
in row i and column j if vertex vi is connected to vertex vj in the graph. All the rest of the 
numbers in the matrix will be zeros.
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We can notice a few features of the adjacency matrix:

• The third row [1 1 0 1 1 0] means that v3 is adjacent to v1, v2, v4, and v5 as we see in 
the preceding graph. The third column [1 1 0 1 1 0]T  is the transpose of the third 
row because it represents the same thing – that v3 is adjacent to v1, v2, v4, and v5.

• The transpose relationship is clearly true for the ith row and ith column for any i.

• The diagonal is filled with zeros since no vertex is connected to itself.  
Self-connections are called loops, but our graph does not have any,  
so we can say G has no loops.

• The sum of the fifth row 1 + 0 + 1 + 1 + 0 + 0 = 3 indicates the degree of v5 is 3, 
d(v5) = 3. In general, the sum of any row or column represents the degree of the 
corresponding vertex.

Notice each row and column have this property, so the transpose of A1 is the same as A1. 
Mathematically, we would write A1T = A1. In other words, aij = aji for each i and j. Such  
a matrix is called a symmetric matrix. All adjacency matrices for non-directed graphs  
are symmetric.

Example: adjacency matrix for a non-connected graph
We can similarly write an adjacency matrix for the graph G in Figure 8.8 as follows:

Figure 8.13 – An adjacency matrix for the graph in Figure 8.8

Once again, we have a symmetric matrix, which we showed must occur in an adjacency 
matrix. Here, we can quickly find the degree of each vertex by simply finding the row sums:

d(v1) = 1,      d(v2) = 2,      d(v3) = 2

d(v4) = 2,      d(v5) = 2,      d(v6) = 1
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There is not a way to determine from observation that adjacency matrix A2 corresponds to 
a graph that is not connected, but we will see in the next section that there is a way to use 
A2 to determine this. 

Definition: adjacency matrix for a directed graph
For a directed graph G = (V, E), an adjacency matrix A = (aij) is a binary matrix where  
aij = 1 if there is a directed edge from vertex vi to vertex vj—that is, if eij ∈  E. All other 
elements of A are zeros.

Since eij ∈  E does not mean eji ∈  E for directed graphs, there is no reason to assume aij = aji 
as in adjacency matrices of (undirected) graphs, so adjacency matrices for directed graphs 
are not symmetric in general.

Important note
In some books, authors define adjacency matrices for directed graphs 
differently. They let aij = 1 if there is an edge from vj to vi rather than the 
convention we have used above.

In the next example, we will find an adjacency matrix for a directed graph.

Example: adjacency matrix for a directed graph
The following matrix is the adjacency matrix for the directed graph G in Figure 8.6:

Figure 8.14 – An adjacency matrix for the graph in Figure 8.6

We can notice a few features of the adjacency matrix:

• The third row [1 1 0 1 1 0] means there are directed edges from v3 to each v1, v2, v4, 
and v5 as we see in the preceding graph. The sum of the row is the number of edges 
leaving from v3.

• The third column [1 0 0 1 1 0]  means there are directed edges from each v1, v4, and 
v5 to v3. The sum of the column is the number of edges coming into v3.

• a66 = 1 is on the diagonal since there is a loop going from v6 to itself.
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Note that, in contrast to the adjacency matrix we saw previously for an undirected graph, 
the adjacency matrix of this directed graph is not symmetric since we have directed edges.

We will come back to this example in the next section and use it to find some features of 
the directed graph corresponding to the adjacency matrix.

Example: storing an adjacency matrix in Python
To store an adjacency matrix in Python, it is smart to use a NumPy array as we saw in 
Chapter 6, Computational Algorithms in Linear Algebra. In the following code, we will 
store the adjacency matrices for the graphs in Figure 8.1 and Figure 8.8 as well as the 
directed graph in Figure 8.6:

import numpy 

# Create an adjacency matrix for the graph in Figure 8.1
A1 = numpy.array([[0, 1, 1, 0, 1, 0], [1, 0, 1, 1, 0, 1],
                 [1, 1, 0, 1, 1, 0], [0, 1, 1, 0, 1, 0],
                 [1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0]])
 
# Create an adjacency matrix for the graph in Figure 8.8
A2 = numpy.array([[0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1],
                 [0, 0, 0, 1, 1, 0], [0, 0, 1, 0, 1, 0],
                 [0, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0]])

# Create an adjacency matrix for the directed graph in Figure 
  # 8.6
A3 = numpy.array([[0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 1, 0], [0, 1, 1, 0, 1, 0],
                 [1, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1]])

# print the adjacency matrices
print("A1 =", A1)
print("\n A2 =", A2)
print("\n A3 =", A3)

This code outputs the matrices A1, A2, and A3 that we wrote mathematically previously:

A1 = [[0 1 1 0 1 0]
 [1 0 1 1 0 1]
 [1 1 0 1 1 0]
 [0 1 1 0 1 0]
 [1 0 1 1 0 0]
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 [0 1 0 0 0 0]]

 A2 = [[0 1 0 0 0 0]
 [1 0 0 0 0 1]
 [0 0 0 1 1 0]
 [0 0 1 0 1 0]
 [0 0 1 1 0 0]
 [0 1 0 0 0 0]]

 A3 = [[0 0 1 0 0 0]
 [1 0 0 0 0 1]
 [0 0 0 0 1 0]
 [0 1 1 0 1 0]
 [1 0 1 1 0 0]
 [0 0 0 0 0 1]]

As we see, the outputs are the exact adjacency matrices we found in the preceding 
examples, but they are now stored in computer memory in these NumPy arrays.

We will revisit these examples in the next section and use it to find some features of the 
graphs from Figure 8.1, Figure 8.8, and Figure 8.6 corresponding with the adjacency 
matrices A, B, and C.

Efficient storage of adjacency data
An adjacency matrix is a little redundant and can, therefore, take up more memory than 
necessary. There are a few ways developers deal with this inefficiency.

Since adjacency matrices are always symmetric, sometimes code that uses adjacency 
matrices stores only the main diagonal of the matrix (a11, a22, …, ann) and elements 
below the diagonal (aij where j ≤ i). If we need an element that should be stored above 
the diagonal, say a24, we can use symmetry to know it is equal to a42, which is below the 
diagonal. In this way, we do not actually need to store a24 or any other element above the 
diagonal when the inefficiency is significant. When there are no loops in the graph, the 
diagonal of zeros also does not need to be stored.

These issues are unimportant if the amount of memory used is small, but for very large 
graphs, such as the web pages (vertices) and their link structure (edges) from a large 
website such as Reddit, the storage required can be very large, so cutting the storage space 
in half can be significant.
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Further, if a graph has far more vertices than edges |V| >> |E|, an adjacency matrix will 
largely be filled with zeros. To be specific, the matrix is of size |V|2  and there are 2|E|  
ones in the matrix, meaning there would be |V|2 – 2|E| zeros, which is a big number  
if |V| >> |E|. Storing all these zeros uses a lot of memory, often for not much benefit.  
In this situation, adjacency lists are sometimes preferred, as we need to store only 2|E| 
values, the two endpoints of each edge.

Next, let's look at the corresponding ideas for networks.

Definition: weight matrix of a network
For a network N = (V, E, W), a cost matrix is a matrix W = (wij) – that is, where the 
number in row i and column j is the weight wij of the edge connecting vertices vi and vj  
if the edge exists. If there is no edge between vi and vj, we set wij = 0 in the matrix.

Since it may be the case that the weight of the edge from vertex vi to vertex vj is not equal 
to the weight of the edge from vertex vj to vertex vi in directed networks (or maybe the 
second edge does not even exist!), there is no reason to assume wij = wji as in weight 
matrices of (undirected) networks, so weight matrices for directed networks are not 
symmetric in general.

Important note
In some sources, weight matrices are referred to by various other names 
depending on what the networks are being used to model—distance matrices, 
cost matrices, or even simply adjacency matrices. We will use a weight matrix 
exclusively. 

We will consider an example of the weight matrix of a specific network in the next 
example.

Example: weight matrix of a network
The weight matrix from the network shown in Figure 8.5 is given here:

Figure 8.15 – A weight matrix for the network in Figure 8.5
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We constructed the matrix by noting, for example, the weight of the edge connecting v1 
and v2 is 4, so w12 = w21 = 4, and continuing in the same way to fill in the remainder of the 
numbers.

Weight matrices of (undirected) networks share some properties with adjacency matrices 
of are symmetric and zeros occur in positions of the matrix corresponding to any two 
vertices that are not connected by an edge. That is, vertices that are not adjacent.

Definition: weight matrix of a directed network
For a directed network N = (V, E, W), a cost matrix is a matrix W = (wij) – that is, where 
the number in row i and column j is the weight wij of the edge going from vertex vi to 
vertex vj if the edge exists. If there is no edge going from vi to vj, we set wij = 0 in the 
matrix.

Let's consider an example from a directed network we saw in an earlier section to make 
this idea clearer.

Example: weight matrix of a directed network
Let's find the weight matrix for the network shown in Figure 8.7:

Figure 8.16 – A weight matrix for the network in Figure 8.7

We constructed the matrix by noting, for example, the weight of the edge going from v1 to 
v3 is 3, so w13 = 3 and continuing in the same way to fill in the remainder of the numbers. 
Unlike the undirected network cost matrix, this one is not symmetric since, for example, 
w31 = 0 ≠ w13 since there is no edge going from v3 to v1.

Example: storing weight matrices in Python
To store a weight matrix in Python, it is smart to use a NumPy array as we saw in Chapter 
6, Computational Algorithms in Linear Algebra. In the following code, we will store the 
weight matrices for the network in Figure 8.5 and the directed network in Figure 8.7:

import numpy
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# Create a weight matrix for the network in Figure 8.5
W1 = numpy.array([[0, 4, 1, 0, 2, 0], [4, 0, 2, 1, 0, 1],
                 [1, 2, 0, 1, 1, 0], [0, 1, 1, 0, 2, 0],
                 [2, 0, 1, 2, 0, 0], [0, 1, 0, 0, 0, 0]])

# Create a weight matrix for the directed network in Figure 8.7
W2 = numpy.array([[0, 0, 2, 0, 0, 0], [1, 0, 0, 0, 0, 2],
                 [0, 0, 0, 0, 2, 0], [0, 2, 3, 0, 4, 0],
                 [3, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1]])

# Print the weight matrices
print("W1 =", W1)
print("\n W2 =", W2)

And the code has output:

W1 = [[0 4 1 0 2 0]
 [4 0 2 1 0 1]
 [1 2 0 1 1 0]
 [0 1 1 0 2 0]
 [2 0 1 2 0 0]
 [0 1 0 0 0 0]]

 W2 = [[0 0 2 0 0 0]
 [1 0 0 0 0 2]
 [0 0 0 0 2 0]
 [0 2 3 0 4 0]
 [3 0 1 1 0 0]
 [0 0 0 0 0 1]]

As we see, the weight matrices have been stored as NumPy arrays in computer memory  
by Python. It is then prepared for analysis with Python.

Now that we have learned how to store graphs as adjacency matrices and networks as 
weight matrices, we are prepared to look at some approaches to extract features from 
graphs and networks in Python.
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Feature extraction of graphs
In this section, we will learn how to find features of graphs from their adjacency matrices 
using some methods from linear algebra we learned in Chapter 6, Computational 
Algorithms in Linear Algebra—especially matrix sums and matrix multiplication.  
We will learn how to find the degrees of vertices, count the paths between vertices of  
a specified length, and find the shortest paths between vertices of graphs.

Degrees of vertices in a graph
In this subsection, we will learn how to find the degrees of vertices with Python. As  
we mentioned in the previous section, the row (or column) sums of an adjacency matrix 
give the degrees of each vertex.

We do these calculations in Python:

# Find the degrees of each vertex of the graph in Figure 8.1

# Using column sums
print(numpy.sum(A1, axis=0))

# Using row sums
print(numpy.sum(A1, axis=1))

Note that we use the sum() function from NumPy where the first input is the adjacency 
matrix A1 of the graph in Figure 8.1 and the second is the axis, which specifies whether it 
should sum the rows or sum the columns. In the first one, we use axis=0, so it computes 
the column sums. In the second, we use axis=1, so it computes the row sums. The 
output follows:

[3 4 4 3 3 1]
[3 4 4 3 3 1]

Of course, the two agree with one another for an undirected graph since their adjacency 
matrices must be symmetric. And, these numbers agree with the degrees we found by 
inspection. Of course, this counting by inspection for every vertex on a real, large graph 
would be infeasible to do manually.

For a directed graph, we must realize the adjacency matrix is constructed differently.  
A1 in row i, column j means there is a directed edge going from vertex vi to vertex vj. So, 
if we add all the numbers in row i, this will give the number of edges leaving from vi, 
sometimes called the out-degree of vi. Practically, we can compute this out-degree for each 
vertex by computing row sums.
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In contrast, to find the number of edges entering vj, sometimes called the in-degree of 
vj, we need to add up column j. In general, we need to compute column sums to get the 
in-degrees of the vertices.

We will implement both for adjacency matrix A3 corresponding to the directed graph in 
Figure 8.6 in Python here:
# Find out-degrees for each vertex in the directed graph in 
  # Figure 8.6
outdegrees = numpy.sum(A3, axis=1)
print(outdegrees)

# Find in-degrees for each vertex in the directed graph in 
  # Figure 8.6
indegrees = numpy.sum(A3, axis=0)
print(indegrees)

print(numpy.sum(outdegrees))
print(numpy.sum(indegrees))

This code gives the out-degrees and then the in-degrees for the vertices:
[1 2 1 3 3 1]
[2 1 3 1 2 2]
11
11

In this case, we computed the row and column sums just like we did for the preceding 
undirected graph, but here, there is a different interpretation when we are considering 
directed graphs. The in-degree and out-degree of each vertex differ in general since  
a vertex may have different amounts of edges entering it and exiting from it. However, the 
sum of the in-degrees, 11, equals the sum of the out-degrees since each exiting edge must 
enter some vertex. This number is precisely the number of edges in the directed graph.

The next few ideas we will see have to do with counting the number of paths between 
vertices.

The number of paths between vertices of a specified 
length
Consider the adjacency matrix for the graph in Figure 8.1, A1. Each element of the matrix, 
aij, is 1 if there is an edge connecting vertex vi to vertex vj and 0 otherwise. In other words, 
an element of the matrix is 1 if there is a path of length 1 between the 2 vertices and 0 
otherwise.
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It turns out, multiplying adjacency matrices by themselves reveals some features of  
graphs that may not be so easy to determine by inspection, especially for large graphs.  
For example, suppose we multiply the adjacency matrix by itself:

𝐀𝐀12 = 𝐀𝐀1𝐀𝐀1 

The number in row i, column j comes from computing the dot product between row i of 
the first A1 by column j of the second A1. For example, if i = 2 and j = 3, we have

a21a13 + a22a23 + a23a33 + a24a43 + a25a53 + a26a63 = (1)(1) + (0)(1) + (1)(0) + (1)(1) + (0)(1) + 
(1)(0) = 2

Since these are binary values, if a2jaj3 = 1, then there are both edges between v2 and vj and 
an edge between vj and v3, meaning there is a path from v2 to vj to v3. Otherwise, at least 
one of these edges is not in the graph so the path would not exist.

The sum of these for all j, as we computed earlier, is, therefore, the number of paths with 
two edges between v2 and v3. Each other element of A1A1 is constructed in the same way, 
so each element of the product gives the number of two-edge paths between each pair of 
nodes as follows:

Figure 8.17 – The adjacency for the graph in Figure 8.1 multiplied by itself

There are several details of the squared adjacency matrix that correspond to some features 
of the graph:

• The matrix is symmetric since, for example, the number of paths from v2 to v3 is the 
same as the number of paths from v3 to v2.

• The diagonal elements equal the degree of the vertices. For example, the number in 
row 3, column 3 is 4 since each edge traversed twice makes up a two-edge path from 
v3 to itself.

It turns out the pattern of counting paths continues for higher powers of the adjacency 
matrix. When we multiply by A1 for a third time, we will get the number of three-edge 
paths between each pair of vertices. In general, we have the following theorem.
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Theorem: powers of adjacency matrices 
For a graph G = (V, E) with adjacency matrix A, the number in row i, column j in the 
matrix An is the number of paths with n edges between vertex vi and vertex vj in the graph. 

Matrix powers in Python
We learned how to multiply matrices with the Python function numpy.dot() in Chapter 
6, Computational Algorithms in Linear Algebra, which we could use multiple times with  
a loop to repeatedly multiply by a matrix, but here, we will learn a better way is to use the 
numpy.linalg.matrix_power function, also from NumPy.

For example, let's recreate the calculation of the number of two-edge paths between 
each pair of vertices in the graph depicted in Figure 8.1 with Python and also find the 
number of three-edge paths between each pair of vertices by taking the third power of the 
adjacency matrix A1:

# Find the second power of adjacency matrix A1
print(numpy.linalg.matrix_power(A1,2))

# Find the third power of adjacency matrix A1
print("\n", numpy.linalg.matrix_power(A1,3))

Then, the output is as follows:

[[3 1 2 3 1 1]
 [1 4 2 1 3 0]
 [2 2 4 2 2 1]
 [3 1 2 3 1 1]
 [1 3 2 1 3 0]
 [1 0 1 1 0 1]]

 [[4 9 8 4 8 1]
 [9 4 9 9 4 4]
 [8 9 8 8 8 2]
 [4 9 8 4 8 1]
 [8 4 8 8 4 3]
 [1 4 2 1 3 0]]

The code finds the second and third powers of the adjacency matrix and prints them.

In general, we tend to see larger numbers in the third power because there are more  
three-edge paths between most pairs of vertices than there are two-edge paths.
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One notable exception is that the element in row 6, column 6 is 0 because there are no 
three-edge paths from v6 to itself because any path must start with the edge e62 and end 
with the edge e26, so adding any one additional edge cannot form a path returning to v6 
since v2 has no self-connection.

We can use this idea to determine the shortest path between two vertices, as we will  
do next.

Theorem: minimum-edge paths between vi and vj
The minimum n such that the number in row i, column j in the matrix An is positive is the 
number of edges in the minimum-edge path from vi to vj. In other words, n is the shortest 
distance from vi to vj.

This theorem is self-evident from the previous theorem. Since the number in row i, 
column j of A1, A2, A3, … represents the number of paths from vi to vj with 1 edge, with 2 
edges, with 3 edges, and so on. Therefore, the first power where the number is not 0 is the 
shortest path that exists between those vertices.

Example: paths between nodes in Figure 8.8
Consider the graph in Figure 8.8. Let's find the number of paths of different lengths 
between some pairs of nodes with Python. We will write a loop to calculate powers of the 
matrix from n = 1 to n = 6 and print the number of paths of each length between some 
given vertices. See the following code for these operations:

# Print the number of paths from v1 to v6 of each length from 1 
  # to 6
for counter in range(1,7):
    A2counter = numpy.linalg.matrix_power(A2,counter)
    print("There are", A2counter[0,5], "paths of length", 
      counter, "from v1 to v6")

# Print the number of paths from v2 to v3 of each length from 1 
  # to 6
for counter in range(1,7):
    A2counter = numpy.linalg.matrix_power(A2,counter)
    print("There are", A2counter[1,2], "paths of length", 
      counter, "from v2 to v3")

And the output is the following:
There are 0 paths of length 1 from v1 to v6
There are 1 paths of length 2 from v1 to v6
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There are 0 paths of length 3 from v1 to v6
There are 2 paths of length 4 from v1 to v6
There are 0 paths of length 5 from v1 to v6
There are 4 paths of length 6 from v1 to v6

There are 0 paths of length 1 from v2 to v3
There are 0 paths of length 2 from v2 to v3
There are 0 paths of length 3 from v2 to v3
There are 0 paths of length 4 from v2 to v3
There are 0 paths of length 5 from v2 to v3
There are 0 paths of length 6 from v2 to v3

From the first loop, we see the shortest path from v1 to v6 is 2 and it seems only odd-length 
paths exist between the two, corresponding to the number of times we will traverse the 
two-edge path v1-v2-v6. In contrast, there are no paths of length 6 or less between v2 and v3. 
This suggests what we can see by inspection—there are no paths between v2 and v3.

This brings the section to an end, now that we have learned how to extract degrees, the 
number of paths between nodes, and short paths on graphs with Python.

Summary
In this chapter, we began by introducing the ideas of graphs, directed graphs, networks, 
and directed networks along with some common language used to describe them. Next, 
we introduced a few ways in which these structures are used for modeling practical 
problems, many to be investigated more deeply in the forthcoming chapters.

After this, we moved on to consider ways in which graphs and networks can be stored in 
computer memory with Python. Especially popular are adjacency matrices and adjacency 
lists for graphs and weight matrices for networks. In the last section, we showed many 
features of graphs from adjacency matrices, such as degrees of vertices, the number of 
paths between pairs of vertices, and the length of the minimum-edge paths between the 
vertices.

Altogether, this chapter has defined graphs, trees, networks, and the directed types of 
these structures, established some common vocabulary on these topics, familiarized  
you with some practical applications of each, shown how they can be stored in computer 
memory—most frequently in the forms of adjacency or cost matrices, and how to extract 
some features of the graphs from these matrices using NumPy and Python code.
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These new skills will serve you well and open doors to a very effective type of modeling 
for practical problems using graphs, trees, and networks. In Searching Data Structures 
and Finding Shortest Paths, we will focus on algorithms for traversing graphs and trees 
to detect more complex features of the graphs. These algorithms have many practical 
applications in web crawling for Google, finding driving directions on MapQuest, locating 
sources of files in peer-to-peer networks such as BitTorrent, and recommending friends to 
users on Facebook.



9
Searching  

Data Structures  
and Finding  

Shortest Paths
This chapter will discuss the searching techniques of graph, tree, and network data 
structures and practical applications of graph searches. We will introduce and analyze two 
popular algorithms for related problems: depth-first search (DFS) for graph searches and 
Dijkstra's algorithm for finding the shortest paths between vertices in networks. Both are 
introduced on small graphs to build intuitive understanding, and Python implementations 
are written that can scale up to real-world problems. 

In this chapter, we will cover the following topics: 

• Searching graph and tree data structures 

• Depth-first search algorithm

• The shortest path problem and variations of the problem 
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• Finding shortest paths with brute force

• Dijkstra's algorithm for finding shortest paths

• Python implementation of Dijkstra's algorithm

By the end of this chapter, you will be able to explain the purpose of searching, implement 
the DFS methods, understand shortest path problems and their variants, and implement 
Dijkstra's algorithm to find shortest paths.

Important note
Please navigate to the graphic bundle link to find the color images for  
this chapter.

Searching Graph and Tree data structures
In the previous chapter, we learned about graphs and trees. As we progress through 
the chapter, keep in mind that whenever we refer to graphs, this includes trees because 
trees are simply graphs that have no cycles. The topic of this section is the idea of 
searching graphs. This simply means to travel along the edges of a graph to locate paths 
to destination vertices. This sounds like a simple thing to do, but we hope to do it as 
efficiently as we can because many real-world graphs are huge.

There are many reasons why we might want an algorithm to traverse the graph to find 
vertices. For example, suppose you want to send a message over the internet to five of 
your friends living in five different cities. There certainly will be no direct connection 
between your device and your friends' devices, so the message must follow multiple paths 
from vertex to vertex through networked devices until it reaches your friends. Networked 
devices connect and disconnect from each other from time to time, so it is not possible 
for us to store a permanent graph representing the network. This means the paths must be 
mapped out at the time you want to send the message. This is what a graph search can do.

Now, determining along which path to send the message is a different question. As the 
graph search maps the paths, we may want to choose the paths that take the least time  
to deliver the messages or paths that flow through connections that are not congested.  
We will learn about finding the shortest path later in the chapter, but for now, it suffices  
to say that a graph search is frequently an important part of solving such problems.

This is the norm. Graph searches do not do too much on their own, but they tend to be 
used as subroutines in complex algorithms that solve many problems, such as finding 
shortest paths and minimum spanning trees, detecting connected components of 
graphs, analyzing network flow, matching vertices from one group with another, or large 
scheduling problems where tasks have complex relationships.
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In the next section, we learn about one of the most popular graph search algorithms, DFS.

Depth-first search (DFS)
In short, graph searches traverse a graph to map its structure. In this section, we will learn 
about an algorithm to accomplish such a search. Mapping out the structure of a graph can 
be important on its own, but it is a sub-problem that algorithms must solve in order to 
solve larger problems in graphs, as we have discussed. The DFS algorithm is quite possibly 
the most common approach for graph searches; it is an efficient method, and it is used as  
a subroutine in many more complex algorithms.

DFS starts at a source vertex, traverses the first available edge to visit another vertex, and 
repeats this until there are no edges leading to unvisited vertices—that is, until it has 
gone as deep as possible. At this time, it backtracks to the last vertex that has unvisited 
neighbors and takes another trip from that vertex through as many unvisited vertices until 
it reaches another dead end. It then backtracks and travels to unvisited vertices again and 
again until all the vertices connected to the source have been visited.

Let's pursue this method on the following small graph so that we can understand the idea 
well. We will start at v1 and explore the graph using DFS.

Note that it was not specified how to choose a path, so we will arbitrarily move to the 
lowest-numbered vertex when we have more than one option. We will color vertices 
and edges within the current path orange and previously visited vertices and previously 
traversed edges will be green:

Figure 9.1 – A graph
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Step 1: The first step will go to v2, which is not adjacent to any vertices we have not yet 
visited, so it stops:

Figure 9.2 – Step 1 of DFS

Step 2: We backtrack to node v1, and then follow paths until we reach a dead end once 
again. This will take us from v1 to v5 to v4 to v3 to v6, which has no unvisited neighbors,  
so we stop:

Figure 9.3 – Step 2 of DFS

Step 3: We backtrack all the way to v5 because it is the latest one in the orange path with 
unvisited neighbors and take a path to v7 to v8 to v9 to v10 and stop:
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Figure 9.4 – Step 3 of DFS

Finally, all the vertices connected to source v1 are colored in our diagram, indicating all 
have been visited, so the graph search is complete.

The list of vertices this DFS would produce is as follows:

Notice vertex v11 has not been visited because it is not connected to the source vertex.  
In general, DFS will not leave a connected component of the source vertex. For a graph 
with multiple connected components, you would have to run DFS once within each 
component if you wanted to visit all the vertices.

Now, let's move on to write an implementation of the DFS algorithm in Python.

A Python implementation of DFS
Of course, for large, practical problems, we cannot simply apply the algorithm by hand! 
Instead, let's write an implementation of the DFS algorithm in Python.

We will write a function called DFS that will take an input of an adjacency matrix of  
a graph and will return all the vertices connected by a path to the source vertex.

We will present it in pieces and explain as we go. First, we have some documentation 
listing what the function does and outlines its inputs and outputs:

# Depth First Search
# 
# INPUTS

𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣5, 𝑣𝑣4, 𝑣𝑣3, 𝑣𝑣6, 𝑣𝑣7, 𝑣𝑣8, 𝑣𝑣9, 𝑣𝑣10 
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# A - an adjacency matrix. It should be square, symmetric, and 
  # binary
# source - the number of the source vertex
#
# OUTPUTS
# vertexList - an ordered list of vertices found in the search

Next, we define the functions with inputs of an adjacency matrix and source vertex, 
subtract the source by 1 since Python counts from 0, find the number of vertices in the 
graph, and initialize several data structures, including a binary array to store which 
vertices have been visited, a stack to be used in the algorithm, and a vertex list the 
algorithm will fill in:

def DFS(A, source):
    # reduce the source by 1 to avoid off-by-1 errors
    source -= 1
    
    # find the number of vertices
    n = A.shape[0]
    
    # initialize the unvisited vertex set to be full
    unvisited = [1] * n
    
    # initialize a queue with the source vertex
    stack = [source]
    
    # initialize the vertex list
    vertexList = []
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Then, take the last vertex in the stack and add it to the vertex list if it has not been visited, 
and add all unvisited neighboring vertices to the end of the queue. Repeat this until the 
stack is empty. And, lastly, return the vertex list:

    # while the stack is not empty
    while stack:
        # remove the just-visited vertex from the stack and 
          # store it
        v = stack.pop()
        
        # if v is unvisited, add it to our list and mark it as 
          # visited
        if unvisited[v]:
            # save and print the number of the newly visited 
               # vertex
            vertexList.append(v)
            
            # mark the vertex as visited
            unvisited[v] = 0

        # iterate through the vertices
        for u in range(n - 1, 0, -1):
            # add each unvisited neighbor to the stack
            if A[v,u] == 1 and unvisited[u] == 1:
                stack.append(u)
                
    return vertexList
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Now that the code is written, let's test it on the example we did previously by hand just to 
confirm it works as intended. We will need to save the adjacency matrix first:

# Save the adjacency matrix for the graph in Figure 9.1
A = numpy.array([[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
                  [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0],
                  [0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0],
                  [1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0],
                  [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0],
                  [0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0],
                  [0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0],
                  [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
                  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])

Next, let's run the DFS algorithm with source vertex 1 just like we did by hand before. 
We will also add 1 to each of the numbers in the vertex list since we have counted from 1 
unlike Python:

# Run DFS on the graph with adjacency matrix A and source 1
vertexList = DFS(A,1)

# Add 1 to the vertex numbers
[x + 1 for x in vertexList]

The output is as follows:

[1, 2, 5, 4, 3, 6, 7, 8, 9, 10]

When we applied the algorithm by hand, note that we found the exact same list in the 
exact same order. Clearly, the code is replicating what we were able to do by hand except  
it runs almost instantly, so our DFS implementation is a great success!

In this section, we have learned what the DFS algorithm is, discussed some of its 
applications, applied it by hand to an example, wrote a Python implementation of the 
algorithm, and showed that it matches the results of our example.

The remainder of the chapter focuses on a very practical problem: finding the shortest 
path between two vertices in a network or weighted graph.
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The shortest path problem and variations of 
the problem
In this section, we shift our focus to a different graph-related problem: finding the shortest 
paths between vertices in a network. As we will discuss, this is a problem that is important 
for routing problems, such as finding the shortest route to travel in a car to a destination 
or finding the fastest way to deliver a message over a computer network. Shortest path 
problems have even been used to determine how to use the thrusters on small fleets of 
deep-space research satellites to move them into very precise positions in relation to one 
another with minimal fuel usage so that they could work in unison to capture images of 
stars. 

For graphs with unweighted edges, we have previously solved this problem. Let's review 
this simpler problem and its solution briefly before continuing to the more general 
problem on networks (that is, weighted graphs). In Chapter 8, Storage and Feature 
Extraction of Graphs, Trees, and Networks, we found a way to find the minimum-edge 
path, or shortest path, between nodes vi and vj on a graph or directed graph. It was simply 
the smallest number, n, such that the nth power of the adjacency matrix, An, has a positive 
value in row i, column j. This was obvious since the number in this position gives the 
number of vi-to-vj paths of length n.

This result is useful because it allows us to find the shortest distance between nodes 
in graphs and directed graphs in an efficient way since matrix multiplication is 
computationally cheap, with computational complexity below O(n3).

Shortest paths on networks
However, a problem with much wider applicability is finding the shortest path between 
nodes in a network where the edge weights represent the distance between the nodes. 
This is a very important problem. It can allow map apps such as MapQuest, Google 
Maps, or Waze to find a route with the shortest-distance path between two cities, which 
is something many of us use every day! An equivalent problem is finding the shortest 
distance to supply electricity from a power source to a customer through nodes in an 
electrical grid. Given that there is more loss of energy over longer distances, a smart grid 
would keep these distances small to efficiently use the energy generated by power stations.



206     Searching Data Structures and Finding Shortest Paths   

Beyond Shortest-Distance Paths
Beyond these examples, it is also possible to interpret weights as something other than 
distances. For example, if we use Google Maps to find a path to a certain address,  
we might be more interested in how long it takes to reach the address than the distance 
traveled. Traveling to the address on foot might yield the shortest distance, but if the 
distance is measured in tens or hundreds of miles, the shortest distance might be quite 
useless! Instead, we may assign weights to the network corresponding to the time it takes 
to travel between nodes. A related problem is used by driving apps such as Waze to use 
real-time traffic data to provide better estimates of the time it takes to drive between two 
locations. Here, again, the distance is not the most important factor in finding optimal 
driving directions—we would like to have the shortest-time route:

Figure 9.5 – In this map, we see two routes: one 503 miles and the other 511 miles

Notice, in Figure 9.5, how Google Maps recommends the longer-distance path instead of 
the shortest path. This is because its goal is to give the route with the shortest time, which 
happens to be slightly longer in distance. There are many reasons why this could be true: 
the shorter route may have more traffic, lower speed limits, or more traffic lights.
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Treating weights as times opens a whole new set of applied problems where we are 
interested in shortest-time paths. For example, if you want to send a text message from 
your phone to another person's PC, we would like to choose a path over a network to send 
the message from your phone to your friend's PC. Here, we are far more interested in the 
latency, or lag-time, in delivering the message than the distance the signal must travel. 
Finding shortest-time paths allows us to have intelligent policies for sending traffic over 
computer networks or the internet.

Another option is to use weights that represent the cost of adding an edge to a path. For 
example, perhaps it costs money for a traveler to traverse an edge, such as costs for fuel  
or wages for a truck driver in the context of driving, and we may want to find the 
minimum-cost path, even if the distance and time are not minimal. Similarly, if we would 
like to build a road connecting two cities through some intermediate nodes, the costs of 
building each stretch of roadway between each pair of nodes will be different depending 
on not only the distance between the nodes but also the terrain between them, the 
distance of transporting materials and workers, and many other considerations.

Whether we seek shortest paths in the context of distance, time, cost, or some other 
consideration, we have seen that they all break down to the same problem in the context 
of networks—seeking the minimum sum of weights for a path connecting two nodes  
we select. This merging of so many different problems into one abstract problem in terms 
of networks displays the power of mathematics to generalize and solve many problems  
at once.

Shortest Path Problem Statement
We can see that there are reasons to let the weights represent very different measurements 
in different applied problems, so let's abstract away from specific assumptions on what 
they represent and formalize the problem statement for finding shortest paths on 
networks.

Let N = (V, E, W) be a network, where V = {v1, v2, …, vn} is the set of vertices, E is the set 
of edges connecting pairs of vertices, and W is the set of weights of the edges. We will 
seek the shortest path from vertex vi to vertex vj. That is, we want to find a set of edges 
connecting vi to vj with a minimal sum of edge weights.

Note that there may be many different paths between a given pair of nodes or there may 
be no paths between them. If there are paths between them, there may be multiple paths 
with a minimal sum of weights. As such, we should bear in mind that it is a problem 
where solutions may not exist, there may be a unique solution, or there may be multiple 
solutions.
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For most practical purposes, only the possibility that there is no solution is especially 
important. What this means is that vi is not connected to vj by any path. Let's learn how to 
check that vi is connected to vj using a method from the previous chapter.

Checking whether Solutions Exist
Recall that we could find the path with minimal edges from vi to vj by exponentiating the 
adjacency matrix until the value in row i, column j is non-negative. Of course, this will 
never happen if vi is not connected to vj, but we will generally know how many edges, |E|, 
are in a network. Therefore, if An has a 0 in row i, column j for all cases of n ≤ |E|, then 
there will be no path between these nodes and we will know that there is no shortest path 
because, even if we use all the edges in the graph, it does not contain a path from vertex  
vi to vj, so they must not be connected. In the case that they are connected, there exists  
a path and so there exists a minimal-weight path.

Thus, before using an algorithm to find the shortest path, it is a good idea to confirm 
whether any path exists first by exponentiating the adjacency matrix until we confirm. 
Let's write a Python function to do this check. We will simply check whether the vertices 
are adjacent and, if not, exponentiate the adjacency matrix one power at a time until  
we can confirm that a path exists. Or, if we reach A|E| without detecting a path, we know 
there are no paths from vi to vj. In this case, we will know that there is no solution to the 
shortest path problem, so we can avoid the trouble of searching for it!

Our function will return True if there is a path and print the length of the path. The 
function will return False and print a notice that no path was found:

import numpy

# create a function that returns True if vertex i and vertex j 
  # are connected in the graph represented by the input
    # adjacency matrix A
def isConnected(A, i, j):
    # initialize the paths matrix to adjacency matrix A
    paths = A
    
    # find the number of vertices in the graph
    numberOfVertices = A.shape[0]
    
    # find the number of edges in the graph
    numberOfEdges = numpy.sum(A)/2

    # if vi and vj are adjacent, return True
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    if paths[i-1][j-1] > 0:
        print('Vertex', i, 'and vertex', j, 'are adjacent')
        return True

    else:
        # run the loop until we find a path
        for pathLength in range(2, numberOfVertices):
            # exponentiate the adjacency matrix
            paths = numpy.dot(paths, A)
            
            # if the element in row i, column j is more than 0, 
               # we found a path
            if paths[i-1][j-1] > 0:
                print('There is a path with', pathLength,
                      'edges from vertex', i, 'to vertex', j)
                return True

        # found no paths, the vertices are not connected
        if pathLength == numberOfEdges:
            print('There are no paths from vertex', i, 'to 
               vertex', j)
            return False

Since we have written a function, there is no output from this code as it is written, 
but we can run it by inputting a specific adjacency matrix for a graph along with the 
vertex numbers i and j. Writing a function gives us the advantage of being able to reuse 
it as much as we like with different inputs to determine whether different vertices are 
connected.
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To test our code, let's use it to find some path lengths between vertices on a small graph 
we can easily determine visually and check whether the code replicates these facts. Recall 
the following graphs from Chapter 8, Storage and Feature Extraction of Graphs, Trees, and 
Networks:

Figure 9.6 – Graph G1 (left) and graph G2 (right)

Let's call the graph on the left G1 and the graph on the right G2. Of course, it is okay  
if the graphs are actually networks with edge weights, but the weights are unimportant  
to determining whether or not two vertices are connected in the network:

# create an adjacency matrix for the graph G1
A1 = numpy.array([[0, 1, 1, 0, 1, 0], [1, 0, 1, 1, 0, 1],
                  [1, 1, 0, 1, 1, 0], [0, 1, 1, 0, 1, 0],
                  [1, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0]])

# check if various vertices are connected
print(isConnected(A1, 1, 4))
print(isConnected(A1, 2, 3))
print(isConnected(A1, 5, 6))

Here, we entered the adjacency matrix for graph G1 and checked whether several pairs  
of vertices are connected. The output of the code is as follows:

There is a path with 2 edges from vertex 1 to vertex 4
True

Vertex 2 and vertex 3 are adjacent
True

There is a path with 3 edges from vertex 5 to vertex 6
True



The shortest path problem and variations of the problem     211

Clearly, these outputs match the facts we can easily see from the graph: there is a two-edge 
path from v1 to v4, there is an edge connecting v2 and v3, and there is a three-edge path 
from v5 to v6.

With graph G2, the code should output False for some choices of vertices. Let's try it out:

# create an adjacency matrix for graph G2
A2 = numpy.array([[0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1],
                  [0, 0, 0, 1, 1, 0], [0, 0, 1, 0, 1, 0],
                  [0, 0, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0]])

print(isConnected(A2, 1, 6))
print(isConnected(A2, 2, 5))
print(isConnected(A2, 1, 4))

The output is as follows:

There is a path with 2 edges from vertex 1 to vertex 6
True

There are no paths from vertex 2 to vertex 5
False

There are no paths from vertex 1 to vertex 4
False

Again, the code replicates the facts we can easily see from looking at the diagram of graph 
G2: vertices v1 and v6 are connected, vertices v2 and v5 are not connected, and vertices v1 
and v4 are not connected.

Now that we have a method to verify solutions exist before we look for them, we will 
discuss a method to find the shortest path in a small problem.

Important note
Note that, for large networks, this check for connectedness is somewhat 
expensive to run. In this case, we would skip straight to searching for the 
shortest paths, although we must realize that the search will fail if vertices vi 
and vj are not connected.
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Finding Shortest Paths with Brute Force
As we laid out in the previous section, we will seek a path from vertex vi to vertex vj with 
a minimal sum of edge weights. Let's look at the prospects of finding the shortest paths 
using brute force.

For example, consider the following network that we discussed in Chapter 8, Storage and 
Feature Extraction of Graphs, Trees, and Networks. We will let V be the set of vertices, E be 
the set of edges, and W be the set of weights:

Figure 9.7 – A network

An example problem that we will try to solve is to find the shortest path from v1 to v2. 
There are many paths between these two vertices, which we list as follows along with their 
lengths:

 

Figure 9.8 – All the paths from v1 to v2 and their lengths, excluding paths that revisit the same vertex
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From this full list of paths from v1 to v2, we can easily see that the shortest paths are the 
ones in the highlighted rows with lengths of 3 units, either taking a path from v1 to v3 to v2 
or a path from v1 to v3 to v4 to v2.

Notice that these short paths contain more edges than the minimal-edge path that simply 
goes directly from v1 to v2, which has a length of 4 units. Of course, the path length is not 
necessarily dependent on the distance of taking the path and we should not expect the 
shortest paths to necessarily have the fewest number of edges.

Here, we have simply listed all possible paths, but for a large graph, this could be 
incredibly expensive to do. For example, suppose a graph with n vertices is complete, 
meaning there is an edge between every pair of vertices. So, vertex v1 has n – 1 incident 
edges. Vertex v2 has n – 2 incident vertices, plus the edge from v1 to v2, which was already 
counted. Vertex v3 has n – 3 incident edges, plus two edges from v1 and v2. Continuing 
this pattern, we eventually find just 1 uncounted edge incident to vn – 1 and all the edges 
incident to vn have been counted. Then, the number of edges altogether is as follows:

According to an inductive proof in Chapter 2, Formal Logic and Constructing 
Mathematical Proofs, the sum of the first n – 1 non-negative integer is as follows:

If the graph has, for example, 100 vertices, then there would be (100)(99)/2 = 4,950 edges, 
and so there could be millions of distinct paths from one vertex to another!

So, just how many paths does this mean there would be between a pair of edges? Suppose 
we want to count the number of paths from vi to vj that contain k additional vertices. 
There are |V| – 2 edges to choose from, so as we learned in Chapter 4, Combinatorics Using 
SciPy, the number of such paths is as follows:

This is the case for any k value between 0 and |V| – 2. Therefore, the number of paths in 
our 100-vertex complete graph containing 5 other vertices is as follows:

1 + 2 + 3 +⋯+𝑛𝑛 − 1 

(𝑛𝑛 − 1)𝑛𝑛
2  

(|𝑉𝑉| − 2
𝑘𝑘 ) =

(|𝑉𝑉| − 2)!
𝑘𝑘! (|𝑉𝑉| − 2 − 𝑘𝑘)! 

(100 − 2
5 ) = (985 ) = 98!

5! (98 − 5)! = 67,910,864 
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But, of course, there's no reason why there would be five additional vertices. There could 
be 2, 3, 4, …, 98 vertices, meaning the number of paths is as follows:

It is a little beyond the scope of this book, but this sum is known to equal the following:

As a result, a brute-force approach such as this is clearly limited! It would take an entirely 
unrealistic amount of time to test this many paths. Also, this 100-vertex graph is quite 
small, especially when you consider the fact that one practical application—map apps 
such as Google Maps—place a vertex at every intersection between pairs of roads within 
entire cities and beyond. This would mean there are over 12,000 vertices in New York  
City alone!

While this brute-force method is easy to understand, it is clearly infeasible, so we need 
a more strategic approach to solve the problem in a useful amount of time. We need an 
efficient way to find the shortest paths between specified vertices on networks or directed 
networks, assuming, of course, that a solution exists. This is what Dijkstra's algorithm 
does, so let's learn about it!

Dijkstra's Algorithm for Finding Shortest Paths
In this section, we will learn about Dijkstra's algorithm for finding the shortest paths, 
consider the process in simple terms, and apply the algorithm by hand to a small network.

The most common algorithm for finding the shortest paths on a network is Dijkstra's 
algorithm. It was named after the Dutch computer scientist Edsger W. Dijkstra, who 
constructed it in 1956, but since computing was such a new field at the time, there were  
so few academic journals dedicated to computing that he did not publish his findings  
until 1959.

We will first learn about the method in intuitive terms using the small network from 
Figure 9.5 so that we can understand the ideas behind the approach. This understanding  
is important because there are many variations of the algorithm and we hope you will 
learn to adapt it to solve your own problems!

Just like the previous section, we will seek the shortest path from v1 to v2. Since it is a small 
network, we were able to find that there are such paths using brute force. The paths were 
as follows:

v1 – v3 – v2 and v1 – v3 – v4 – v2

(980 ) + (981 ) + (982 ) +⋯+ (9898) 

298 ≈ 3.17 × 1029 
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Each of these has a length of 3 units. We will actually construct the short paths from v1 to 
every other vertex in the network along the way to find the shortest path from v1 to v2, as 
this is how Dijkstra's algorithm is typically implemented.

Dijkstra's algorithm
We will start at vertex v1 and traverse the graph as we carry out Dijkstra's algorithm.  
Along the way, we will maintain two lists: vertices we have visited in the method and 
vertices we have not visited in the method. The visited set is empty initially and the 
unvisited set will have all the vertices in it, as we can see:

• Visited vertices = { }

• Unvisited vertices = {v1, v2, v3, v4, v5, v6}

In our problem, the starting point is node v1, which we call the source. Dijkstra's 
algorithm follows the following pattern:

• Initialization: Set the distance to each vertex from the source to infinity and the 
distance to itself as 0.

• Visit the nearest unvisited adjacent vertex with the shortest known distance from 
the source (ties can be broken arbitrarily):

a)  If any distances through the current vertex from the source are shorter than the 
known distances, update the shortest distances.

b)  For any replaced shortest distances, record the "previous vertex" as the current 
vertex.

c) Add the current vertex to the visited vertices list.
• Repeat the work from the previous bullet point until we have visited all of the 

vertices.

In the end, Dijkstra's algorithm will give the shortest paths from the source v1 to every 
other vertex in the graph, which is much more than we asked for, but in many problems, 
we would like to know more than just the one path between specified vertices.

Note that Dijkstra's algorithm is called a greedy algorithm because it chooses the 
cheapest path from the source at each step. Of course, building on the shortest existing 
path need not lead to the best path, but sometimes it does. If we get lucky, we will find 
the shortest path with some of these early choices. If not, then the algorithm will still 
eventually find the solution, but it may have to backtrack a significant number of times 
before it finds the solution, which is not too fast, but it is still far faster than a brute-force 
algorithm could ever hope to be on a problem on a realistically large scale.
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Applying Dijkstra's Algorithm to a Small Problem
Let's see whether we can follow these steps for the preceding small network! We will 
explain each step, draw an updated network highlighting the current vertex and the new 
edges to be investigated to be incorporated into a shortest path, update a table of shortest 
distances and previous vertices, and maintain the lists of visited and unvisited vertices.

Step 0 (initialization): Set the shortest path distance to each vertex to infinity, ∞, except 
we set the distance from the source to itself to be 0:

 

Figure 9.9 – Step 0 of Dijkstra's algorithm

Step 1: Add v1 to the set of visited vertices. Find the distance from the source to all 
adjacent nodes in the unvisited vertices set. If the distance is shorter than the current 
distance, save it:
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Figure 9.10 – Step 1 of Dijkstra's algorithm

Step 2: Visit the unvisited vertex with the shortest distance from the source so far, add it 
to the set of visited vertices, find the distances from the source through this vertex to each 
unvisited vertex, and replace any distances that are shortened (it will be 1 plus the new 
edge weight in this case):

Figure 9.11 – Step 2 of Dijkstra's algorithm
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Step 3: Visit the unvisited vertex with the shortest distance from the source so far (v4), add 
it to the set of visited vertices, find the distances from the source through this vertex to 
each unvisited vertex, and replace any distances that are shortened.

This time, both v4 and v5 have distance 2, so we arbitrarily choose v4:

Figure 9.12 – Step 3 of Dijkstra's algorithm

Here, the distance to v2 would be 2 + 1 = 3, which is not an improvement. The distance 
to v5 would be 2 + 2 = 4, which is not an improvement. Therefore, this step makes no 
updates, and we will simply move on to the next smallest distance on the list.

Step 4: Visit the unvisited vertex with the shortest distance from the source so far (v5), add 
it to the set of visited vertices, find the distances from the source through this vertex to 
each unvisited vertex, and replace any distances that are shortened.

There are no unvisited vertices adjacent to v5, so we move on to the next step:
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Figure 9.13 – Step 4 of Dijkstra's algorithm

Step 5: Visit the unvisited vertex with the shortest distance from the source so far (v2), add 
it to the set of visited vertices, find the distances from the source through this vertex to 
each unvisited vertex, and replace any distances that are shortened:

Figure 9.14 – Step 5 of Dijkstra's algorithm
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Step 6: Visit the unvisited vertex with the shortest distance from the source so far (v6), add 
it to the set of visited vertices, find the distances from the source through this vertex to 
each unvisited vertex, and replace any distances that are shortened:

Figure 9.15 – Step 6 of Dijkstra's algorithm

The unvisited set of vertices is now empty, and the shortest distance to v2 is 3. The last edge 
of the shortest path is the edge from v3 to v2 as per the table. The previous vertex from v3 of 
its shortest path is v1, so the shortest path the algorithm found from v1 to v2 is as follows:

v1 – v3 – v2

This path and distance match what we found by brute force previously, but we followed  
a systematic algorithm. Let's also write down the extra, bonus results Dijkstra's algorithm 
gives us: the shortest paths from v1 to every other node. We summarize the findings in the 
following figure:
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Figure 9.16 – The shortest paths from v1 to every other vertex found with Dijkstra's algorithm

In this section, we have learned about Dijkstra's algorithm for finding the shortest paths 
between vertices in a network and worked through a small example by hand. Given the 
new understanding this example has given us, we will learn how to implement Dijkstra's 
algorithm in Python so that we can solve larger problems!

Python Implementation of Dijkstra's 
Algorithm
We have now learned how Dijkstra's algorithm works, but we will now implement  
it in Python.
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The input to the algorithm will be a network and a source vertex. The simplest way we can 
represent a network is with a weight matrix like we introduced in Chapter 8, Storage and 
Feature Extraction of Graphs, Trees, and Networks. For the graph in Figure 9.7, we have the 
following weight matrix:

Figure 9.17 – A small network and its weight matrix

In the context of a shortest-distance problem, this weight matrix may be called a distance 
matrix, but we will refrain from using this terminology because, as we have seen in 
previous sections, these shortest path problems may or may not actually refer to distances.

The output from the algorithm will be a table like the one at the upper right of Figure 9.15, 
giving the shortest distance from the source vertex to each of the other vertices.

The table in Figure 9.16 could be generated directly as well, but we will save this to be done 
outside the main function for Dijkstra's algorithm.

Let's write a function that takes the weight matrix and source vertex as an input, performs 
Dijkstra's algorithm, and returns the table. Since this code is a little long, we will display  
it in small parts and explain each step.

First, we will import NumPy and write some quick documentation. This just summarizes 
what the following code will do. This is the best practice when you write a new function  
or a significant batch of code:

import numpy

# Dijkstra's algorithm for finding shortest paths from the 
  # source vertex to all other vertices in the graph
# 
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# INPUTS
# W - a weight matrix. It should be a square matrix
# i - the number of the source node
#
# OUTPUTS
# shortestDistances - the shortest distances from the source to 
  # each vertex
# previousVertices - the previous vertex to the destination in 
  # shortest path from the source to a destination

Second, we will define the function called Dijkstra, which will take a weight matrix, W, 
and a vertex, vi, as the source. The first task we will do is find the number of vertices, 
initialize several NumPy arrays to store the data we will output for the table, which is the 
status of each vertex as unvisited or not.

We will also set the initial distances to the destinations as ∞, set the distance to the source 
vertex to 0, and mark the source vertex as a visited vertex:

def Dijkstra(W, i):
    # find the number of vertices
    n = W.shape[0]
    
    # initialize the shortest distances to infinity
    shortestDistances = numpy.array([numpy.inf] * n)
    
    # initialize the previous vertices
    previousVertices = numpy.array([numpy.inf] * n)
    
    # initialize the unvisited vertex set to be full
    unvisited = numpy.array([1] * n)
    
    # mark the source as visited
    unvisited[i - 1] = 0
    
    # initialize distance from the source to the source as 0
    shortestDistances[i - 1] = 0
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Third, we will create a loop that will iterate once for each vertex. Within the loop, we find 
the nearest unvisited vertex, x, and visit it:

    
    # loop for iteration per vertex until the unvisited set is 
        # empty
    for _ in range(n):
        # find the distances to all unvisited adjacent vertices 
        #  and set others to 0 
        distances = shortestDistances * unvisited
        
        # find the index of the nearest unvisited vertex (where
        # distances > 0)
        x = numpy.argmin(numpy.ma.masked_where(
            distances == 0, distances))
        
        # mark vertex x as visited
        unvisited[x] = 0

Fourth, we will iterate over each vertex, and if any adjacent, unvisited vertices have their 
shortest distance from the source reduced by passing through the current vertex, we save 
this new shortest distance and save the current vertex as the vertex to visit prior to this 
destination in the shortest path located so far in the algorithm:

        # iterate through the vertices
        for v in range(n):
            
            oldDistance = shortestDistances[v]
            newDistance = shortestDistances[x] + W[v,x]
            adjacent = W[v,x] > 0
            unvis = unvisited[v]
            
            # if v and x are connected, v has not been visited, 
               # and we find a shorter distance to node v...
            if adjacent and unvis and oldDistance > 
          newDistance:
                # save the shortest distance found so far
                shortestDistances[v] = shortestDistances[x] + 
                  W[v,x]
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                # save the previous vertex
                previousVertices[v] = x                

Lastly, we will print a table just like we have at the upper right of Figure 9.15. Note that 
we add 1 to deal with the fact that Python numbers the vertices from 0 while we number 
them from 1. We also return the same information in the form that Python stores it by 
default in case we want to chain the algorithm to some more work:

    
# print the table similar to the book
    print(numpy.array([numpy.arange(n) + 1, shortestDistances, 
                       previousVertices + 1]).T)    
    # return the outputs
    return shortestDistances, previousVertices

Now that we have written this implementation of Dijkstra's algorithm, we should try  
it out. Now, of course, it should work on large problems, but we recommend you always 
test out new code, especially long ones, on a problem with a known solution just to verify 
that it is working well.

Example – shortest paths
So, let's use the small network and weight matrix from Figure 9.17 and see whether it will 
create the outputs we know are correct as shown in Figure 9.15.

First, we save the weight matrix as a NumPy array:

# Create a weight matrix for the network in Figure 9.15
W1 = numpy.array([[0, 4, 1, 0, 2, 0],
                  [4, 0, 2, 1, 0, 1],
                  [1, 2, 0, 1, 1, 0],
                  [0, 1, 1, 0, 2, 0],
                  [2, 0, 1, 2, 0, 0],
                  [0, 1, 0, 0, 0, 0]])
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Then, we call Dijkstra's algorithm on the matrix, W1, and source vertex, v1:

# Run Dijkstra's algorithm with a source at vertex v1
Dijkstra(W1, 1)

The output is as follows:

[[ 1.  0. inf]
 [ 2.  3.  3.]
 [ 3.  1.  1.]
 [ 4.  2.  3.]
 [ 5.  2.  1.]
 [ 6.  4.  2.]]

(array([0., 3., 1., 2., 2., 4.]), array([inf,  2.,  0.,  2.,  
  0.,  1.]))

The array that is outputted first is exactly the same as the table we found in Figure 9.15 by 
applying Dijkstra's algorithm by hand for this problem.

The second part, which is what was actually returned by the function, is the same as the 
right two columns, just with the numbers less by 1 due to Python's preference to start 
counting from 0.

This chart is nice, but what about actual paths? It would be convenient if we could 
generate the paths themselves as we did by hand in Figure 9.16. This would be tedious 
with a large path, so let's write a short function to do that for us!

First, we define a new function and initialize some variables and lists:

# Use the previousVertices chart to construct the shortest path 
  # from input source to input destination and print a
    # string showing the path

def printShortestPath(shortestDistances, previousVertices, 
  source, destination):
    # avoid off-by-one error
    source -= 1
    destination -= 1
    
    # convert previousVertices to integers



Python Implementation of Dijkstra's Algorithm     227

    previousVertices = previousVertices.astype(int)
    
    # initialize the path with the destination
    path = [destination]
    

Next, we add the previous vertex from the table over and over until we reach the source:

    # add the previous vertex from previousVertices until we 
      # reach the source
    # the source
    for _ in range(previousVertices.shape[0] - 1):
        # if the source is in the path, stop
        if path[-1] == source:
            break
        # if the source is not in the path, add the previous 
          # vertex
        else:
            path.append(previousVertices[path[-1]])
            

Lastly, we create and print a string similar to the second column of the table in Figure 9.16:

    # initialize an output string
    output = []
    
    # iterate through the path backwards (source to 
      # destination)
    for i in numpy.flip(path):
        # construct a list of strings to output
        if i > 0:
            output.append('->')
            
        output.append('v' + str(i + 1))
        
    # print the strings with no spaces
    print('Path =', *output, '\t\t Distance =',
          shortestDistances[destination])
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With this code written, let's run it to find short paths from v1 to each other vertex:

for i in range(2,7):
    printShortestPath(shortestDistances, previousVertices, 1, 
      i)

The output is as follows:

Path = v1 -> v3 -> v2        Distance = 3.0
Path = v1 -> v3        Distance = 1.0
Path = v1 -> v3 -> v4        Distance = 2.0
Path = v1 -> v5        Distance = 2.0
Path = v1 -> v3 -> v2 -> v6  Distance = 4.0

As you can see, it totally matches the table from Figure 9.16.

All looks great for this example, but let's look at an example with an extra difficulty:  
a network where some pairs of vertices have no path between them.

Example – A network that is not connected
Consider the following network and weight matrix:

Figure 9.18 – A network that is not connected

This graph is broken down into two connected components that are not connected to 
one another by any edges, so there will be no shortest path between vertices in opposite 
components. As such, feeding this into Dijkstra's algorithm as we have written it cannot 
work in the same way. We will need to adapt our methods to find the shortest paths.
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First, let's save the weight matrix as a NumPy array:

# Create a weight matrix for the network in Figure 9.16
W2 = numpy.array([[0, 4, 0, 0, 0, 0],
                  [4, 0, 0, 0, 0, 1],
                  [0, 0, 0, 1, 4, 0],
                  [0, 0, 1, 0, 2, 0],
                  [0, 0, 4, 2, 0, 0],
                  [0, 1, 0, 0, 0, 0]])

Next, let's write a small function to do a few things: (1) find all vertices connected to the 
source node using the isConnected function and (2) run Dijkstra's algorithm to find 
the shortest paths:

# find the shortest paths to connected vertices
def distancesWithinComponent(source):
    # initialize the connected component
    component = [source]

    # construct the connected component
    for i in range(1, W2.shape[0] + 1):
        if i != source and isConnected(W2, source, i):
            component.append(i)

    # find the weight matrix correponding to the connected 
       # component
    subnetwork = W2[numpy.array(component) - 1,:][:,numpy.
     array(component) - 1]

    # run Dijkstra's algorithm
    return Dijkstra(subnetwork, 1)

Let's run it from vertex v1:

distancesWithinComponent(1)



230     Searching Data Structures and Finding Shortest Paths   

The output is as follows:

Vertex 1 and vertex 2 are adjacent
There is a path with 2 edges from vertex 1 to vertex 6
[[ 1.  0. inf]
 [ 2.  4.  1.]
 [ 3.  5.  2.]]
(array([0., 4., 5.]), array([inf,  0.,  1.]))

Note that the table is slightly off—the first column should be 1, 2, and 6. However, we have 
constructed a subnetwork and renumbered the vertices to 1, 2, and 3. But, clearly, we see 
the shortest path from v1 to v2 simply follows the edge connecting them for a length of 4 
and the shortest path from v1 to v6 passes through v2 with a length of 5. 

Next, let's run it with a source in the other component, v3:

distancesWithinComponent(3)

The output is as follows:

Vertex 3 and vertex 4 are adjacent
Vertex 3 and vertex 5 are adjacent
[[ 1.  0. inf]
 [ 2.  1.  1.]
 [ 3.  3.  2.]]
(array([0., 1., 3.]), array([inf,  0.,  1.]))

Here, the vertices are v3, v4, and v5. The shortest path from v3 to v4 simply traverses the 
edge connecting them of length 1, while the shortest path from v3 to v4 passes through v5 
and has a length of 3. These results are fairly obvious for the small graph we used, but it is 
good to see that we can use the code we have written to work with disconnected networks.
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Summary
In this chapter, we used our understanding of graph structures, including trees and 
networks, from Chapter 8, Storage and Feature Extraction of Graphs, Trees, and Networks, 
and learned about some practical graph-oriented problems and popular algorithms for 
solving them.

We began by learning about graph searches where we traverse a graph to discover  
its structure and perhaps do some calculations at each vertex. Then, we moved on to 
perhaps the most common graph search algorithm, DFS. We did an example on a small 
graph by hand before writing a Python implementation of the algorithm, which  
we confirmed led to the same results as the example we did by hand.

Then, we moved on to a very practical problem: finding the shortest paths between 
vertices in networks. This problem has applications in finding optimal travel routes, 
sending messages over a computer network through good paths, efficiently delivering 
electricity over electrical grids, and many other areas. With some networks, there are 
no paths between certain vertices, so we wrote a quick procedure to verify vertices are 
connected to each other by a path. Then, we used some counting methods we learned 
in Chapter 4, Combinatorics Using SciPy, to show that brute-force methods to finding 
shortest paths are infeasible.

In the next section, we introduced Dijkstra's practical algorithm for finding the 
shortest path from a source vertex to each other vertex in the network since brute-force 
methods were not effective. It is a greedy algorithm that takes the step that seems most 
advantageous at each iteration. We first carried out the algorithm step by step by hand on 
a small problem to build some understanding of how it works. 

In the last section, we wrote a Python implementation of Dijkstra's algorithm from scratch 
that works just like the example we did by hand. It generated precisely the same optimal 
path for that example, but we also showed how it can immediately be applied to other 
problems by simply inputting the weight matrix and the source node.

Next, we will move on to Part III of the book, which focuses on real-world applications of 
the mathematics we have learned, including linear regression for machine learning, web 
searches with Google's PageRank algorithm, and principal components analysis, a method 
for dimensionality reduction that allows us to store large datasets with fewer variables.





Part III – Real-World 
Applications of 

Discrete Mathematics

Here you will learn how to apply discrete math to real-world, large-scale problems, 
including machine learning—in the shape of regression analysis for building predictive 
models and principal component analysis for dimensionality reduction—and modern  
web searches.

This part comprises the following chapters:

• Chapter 10, Regression Analysis with NumPy

• Chapter 11, Web Searches with PageRank

• Chapter 12, Principal Component Analysis with Scikit-Learn





10
Regression Analysis 

with NumPy and 
Scikit-Learn

The objective of this chapter is to predict an unknown variable based on samples of one 
or more other variables. In the simplest case, we have a sample of paired data (x1, y1), …, 
(xn, yn) and need to find a line that best fits the data (that is, a line that passes through 
or is close to most of the data points) with SciPy implementations of the least-squares 
regression model. We will then extend the method to fit nonlinear curves and to take 
whole databases (x11, x12, …, x1k, y1), …,(xn1, xn2, …, xnk, yn) and try to predict y based on k 
input variables. 

We will also be using some Python libraries, such as SciPy, NumPy, and scikit-learn. 
SciPy is an open source Python library for scientific computing, and NumPy will help us 
to work with multidimensional arrays and matrices and apply high-level mathematical 
functions to these arrays. Scikit-learn is a machine learning library, and we will be using 
the regression classes that come with it. 

By the end of this chapter, you should have learned about the theory behind regression 
(such as the line of best fit, the least-squares method, and more) and how to implement 
this theory for real-world datasets to make predictions. 
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In this chapter, we will be covering the following topics:

• Best-fit lines and the least-squares method

• Least-squares lines with NumPy

• Least-squares curves with SciPy and NumPy

• Least-squares surface with SciPy and NumPy

Important Note
Please navigate to the graphic bundle link to refer to the color images for  
this chapter.

Dataset
For this chapter, we will be using a dataset that contains technical specifications for 
different cars. This dataset is a modified version of the MPG_dataset.csv available 
here: https://www.kaggle.com/uciml/autompg-dataset. Some of the 
columns of the original dataset were removed since they are not relevant to this chapter. 

The columns of the dataset are as follows: 

• mpg: Miles per gallon (continuous variable) 

• cylinders: Number of cylinders in the car (multi-valued discrete variable) 

• displacement: Combined volume of all the cylinders (continuous variable) 

• horsepower: Unit of power (continuous variable) – target/dependent variable 

• weight: Weight of the car (continuous variable)  

• acceleration: Acceleration of the car (continuous variable) 

Let's say that we are trying to buy a car and our deciding factor is horsepower. However, 
we have access to values for all other variables (mpg, displacement, weight, and 
acceleration) except for horsepower. Here are some questions we will try to answer  
in this chapter: 

• Is there any relationship between the horsepower and weight of a car? 

• If there is a relationship, how strong a relationship is it? Is it a linear relationship? 

• Is there any way for us to predict what will the horsepower value be given any one 
or more of the other variables? 

https://www.kaggle.com/uciml/autompg-dataset
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Linear regression can answer the preceding questions. We will learn some general 
concepts about linear regression and then use this dataset to answer the questions  
just posed. 

Here we can see some pair plot code showing the relationship between the different 
variables present in our dataset. The plot gives a general idea about how our variables are 
related to each other:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

#Importing the csv file
df = pd.read_csv("auto_dataset.csv",index_col=0)

#Plotting the pairplot
sns.pairplot(df, diag_kind="kde")
plt.show()

The output of the code is shown here:

Figure 10.1 – Pair plot showing the relationship between different variables in the dataset
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You can see that some of the plots have a straight-line relationship (linear relationship) 
while others do not. There can be different kinds of relationships between variables, such 
as logarithmic, exponential, and polynomial. The plots along the diagonal of the figure 
show the distribution of the variables.

Next, we will discuss best-fit lines and the least-squares method, which will aid our 
understanding of regression analysis. 

Best-fit lines and the least-squares method  
In this section, we will learn about best-fit lines and the least-squares method and see 
some very simple plots to enforce these concepts. Best-fit lines will be used to fit a dataset, 
and through doing this, it is made sure that the least-squares error is minimized. 

Variable 
A variable is a feature that does not have a fixed value. For example, let's say you want to 
buy a car and the most important feature for you is horsepower. You then go ahead and 
look at different car models to compare the horsepower values. Here the horsepower is  
a variable, since it takes different values based on the car model. 

Linear relationship 
Linear relationship is a term used to describe a straight-line relationship. This can be 
expressed mathematically as the equation of a line. 

For example, if you are interested in finding the relationship between two variables, such 
as horsepower and weight, for different cars, and if the horsepower increases or decreases 
linearly (straight-line relationship) with weight, then we can say that these variables have  
a linear relationship.  

Regression
In a typical regression problem, we try to predict the value of an output variable 
(dependent variable) given some input variable (independent variable), based on some 
examples of input data points that we have outputs for. A simple linear regression 
problem can be represented mathematically as shown here (this is the equation for a line): 

Y  βo Xo + β1 X1 = 𝒀𝒀 
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Here, we are trying to find the value of Y based on our knowledge of independent/
predictor variable X1, also called features. βo and β1 are unknown constants (called model 
parameters) that we will have to figure out based on the example data points, which will 
be represented in the form of ordered pairs (Xi, Yi), where i = 0,1,2,….,n. Xo is always equal 
to 1. An independent variable is something whose value we can change as we want and see 
the changes in the dependent variable (here, Y). 

It is important to keep in mind that not all Xi can be mapped to all Yi perfectly or 
generalize to new outputs, but we try to get as close to the ideal match (perfect match) as 
possible, hence the symbol  to convey the fact that it is an approximate model. The 
approximate value of the prediction is represented by �̂�𝒀 . 

An appropriate question to ask here would be, why are we trying to predict a value of Y? 
Often, in real-life scenarios, we would have the values for X (the independent variable) 
and Y (the dependent variable). However, if we want to predict the value of Y for a certain 
X that is of interest to us, we will want to have access to an equation like the previous one. 

For example, say we want to buy a car and we know that there is a linear relationship 
between weight and horsepower. We have some historical data that has weights of 
different cars as well as their corresponding horsepower. Let's say that we come across 
the weight of a car but see no mention of the horsepower. Hence, we can use our data to 
predict what the horsepower might be for this car for which we only know the weight. 

The equation shown previously requires two variables for us to fit a linear regression 
model. However, we can do the same for more variables/for higher dimensions, the 
equation for which is shown here (equation for a plane/surface): 

Y  βo + β1 X1 + β2 X2 + β3 X3 + …. + βn Xn = �̂�𝑌 

We can write the preceding equation in a vectorized form as shown here: 

�̂�𝒀  = β . X

�̂�𝒀  = βT X
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Here, the following applies:

• β is the model parameter vector containing βo,….., βn – these are the parameters  
we will change in order to get Y and �̂�𝒀  as close to each other as possible. 

• X is the model feature vector containing Xo, X1,……, Xn. 

• We are doing a dot product between β and X, which will result in βo + β1 X1 + β2 X2 
+ β3 X3 + …. + βn Xn. 

Both β and X are column vectors. With our knowledge of the vectorized form of an 
equation, we will now move on to learn about the line of best fit. 

The line of best fit  
The line of best fit, also called a trendline, is an educated guess regarding what the linear 
relationship between the independent and dependent variables should be; it is the 
equation of a line that best fits the given data. Let's try to understand this with the help 
of an example. We will plot some X and Y values and see how the line of best fit varies 
depending on the data points. Here, the R2 values give us a measure of the strength of the 
linear relationship between the variables. An R2 value of 1 suggests that the variables are 
indeed linearly related. The lower the R2 value, the more likely it is that the variables might 
not be linearly related:

Figure 10.2 – Data points used for a line of best fit that passes through all points

We will now plot the preceding data points and draw a trendline through the points:
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Figure 10.3 – A line of best fit that passes through all data points

In the preceding plot, we see that the line of best fit passes through all the data points, and 
hence we obtain the equation �̂�𝒀  = X. However, this does not always have to be the case, 
since the X (predictor) and Y (dependent) values are usually not the same in real-world 
examples. 

Next, we will try to plot a similar graph but with mismatched X and Y to see how the  
best-fit line as well as the equation for the line changes:

Figure 10.4 – Data points used for a line of best fit that does not pass through all points
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We will now plot these data points and draw a trendline through the points and compare 
the difference between the previous plot and this one. The following graph shows the 
plotting of the points from the preceding table:

Figure 10.5 – A line of best fit that does not pass through all the data points

We can see from Figure 10.5 that the best-fit line does not pass through all the points and 
hence the equation of the best-fit line has an intercept (βo = 1) and a slope (β1 = 1.1429).

It is important to keep in mind that even if you can draw a best-fit line through some data 
points, it does not mean the variables (X and Y) have a linear relationship. In such cases, 
it is always a good idea to make a scatterplot for the data points and look at the plot to see 
whether a linear relationship makes sense for that dataset. One such example is shown here: 
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Figure 10.6 – A line of best fit for variables that are not linearly related to each other

The preceding figure shows an example where the line of best fit for a linear relationship is 
not a good idea. Hence, non-linear lines of best fit such as polynomial functions could be 
a better idea. 

Now that we have seen what a line of best fit is, the next step is to figure out how these 
lines are constructed; this will be covered in the next section. 

The least-squares method and the sum of squared 
errors
The sum of squared differences between the value of actual Y and the predicted �̂�𝑌  is called 
the sum of squared errors (SSE). If the data points (actual and predicted) are identical, 
then the SSE is 0. This is also a measure of the variance: the greater the variance, the 
greater the SSE, and vice versa. In an ideal case, we would want the SSE to be small, and 
the best-fit line helps us to achieve this goal. The SSE can be mathematically represented 
as follows: 

SSE = e1
2 + e2

2 + …. + en
2
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Here e1, e2,…., en are the differences between the �̂�𝑌  (predicted) and Y (actual), also called 
residuals. The following figure shows how the predicted Y values differ from actual Y 
values, hence giving rise to residuals: 

Figure 10.7 – Residuals 

The preceding figure shows the residuals, in other words, the distance of the actual Y from 
the line of best fit (or predicted �̂�𝑌 ). The least-squares approach tries to minimize the SSE 
by choosing the values of β parameters. To find the value of β that minimizes the SSE, 
there is a closed-form equation that can be used to get the result directly. This equation is 
called the normal equation and is stated here: 

 = (XTX)-1 XT Y 

Here, the following applies: 

•  is the value of the parameters that minimize the SSE.

• Y is the vector of target values ranging from Y1, ….. , Yn. 

The normal equation must compute the inverse of XTX, which is an (n+1) X (n+1)  
matrix (since we have n feature variables and Xo = 1). The computational complexity of 
such an inversion is of the order O(n3), depending on the implementation. Hence, if  
we have double the number of features, then the computational time gets multiplied by  
23 = 8 times. 
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Another thing to keep in mind is that XTX might not be invertible in all cases. 

Now that we have an idea about line of best fit, the least-squares error, and their 
mathematical formulations, we will now learn how to apply these to examples using 
Python. 

Least-squares lines with NumPy
In this section, we will learn how to fit a line to a dataset by using the normal equation as 
well as by using Python libraries. We will also find the parameter values (β) and use these 
values to predict the Y values for some X value of our choice. 

The relationship between the variables (horsepower and weight) can be represented by the 
following mathematical formulation: 

Y  βo + β1 X

Our goal is to find the values for βo and β1. Here, horsepower is the dependent variable (Y) 
and weight is the independent variable (X). 

Before beginning the coding part, make sure that the Python file that you are editing and 
auto_dataset.csv are in the same folder. If not, make sure to include the path for 
the .csv file location in the Python file so that it can be read and used for computations. 
Also, the packages used in the coding exercises (numpy, pandas, seaborn, 
matplotlib.pyplot, and sklearn) should be installed to avoid error messages. 
These packages can be installed by typing pip install numpy (or whatever package 
you want to install) in the terminal. 

We will begin by importing all the required packages. This can be done using the 
following block of code:

Import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Next, we will read the CSV file and import the data to the Python workspace and check 
the shape of the data frame:

df = pd.read_csv("auto_dataset.csv")
df.shape
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The output is this:

(392, 7)

Next, we will use the normal equation to find the parameter values, which will then be 
used for prediction purposes. Here, weight is chosen as the X value and horsepower is 
the Y value:

X = df["weight"]
Y = df["horsepower"]

X_b = np.c_[np.ones((392,1)),X] #here we are adding X_o = 1 to 
  all the feature values  
 beta_values = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(Y)
 print(beta_values)

The output is this:
array([-12.1834847 ,   0.03917702])

We found the value of βo is -12.1834847 and β1 is 0.03917702. 

The equation for the best-fit line is horsepower = -12.183 + 0.0392 * weight.

Let's try to predict the value of horsepower for a car given that we know what its weight 
is. We will try to predict the horsepower values for the cars for which we already know 
these values (weight of car = 2500 and 2045) and hence compare the actual and predicted 
values. We will use equation 4 and the β values obtained in the previous step to find the 
predicted values for horsepower:

X_new = np.array([[2500],[2045]])
X_new_b = np.c_[np.ones((2,1)),X_new]
y_predict = X_new_b.dot(beta_values)
print(f"Weight of car = 2500; predicted horsepower is
  {y_predict[0]:.3}; actual horsepower is 88")
print(f"Weight of car = 2045; predicted horsepower is
  {y_predict[1]:.3}; actual horsepower is 68") 

The output is this:
Weight of car = 2500; predicted horsepower is 85.8; actual 
  horsepower is 88
Weight of car = 2045; predicted horsepower is 67.9; actual 
  horsepower is 68
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Hence, we were able to predict the horsepower of the cars for which we knew the weights. 
We can see that the predicted and actual values are close enough but not the same. This 
happens because this is an approximation since the best-fit line does not pass through all 
the data points and we minimized the SSE.

Now that we have seen how we can use the normal equation to find β values, we will plot 
all the data points and the trendline. We will use the parameter values obtained previously 
to construct the equation for a line that will help us predict the horsepower values for 
cars for which we know the weights:

X_plot= np.array([[1500],[6000]])
X_plot_b = np.c_[np.ones((2,1)),X_plot] 
Y_plot = X_plot_b.dot(beta_values)

Equationline = "Y ={:.3f}+{:.3f}X".format(beta_values[0], beta_
  values[1])
plt.plot(X_plot, Y_plot, "r-", label = Equationline)
sns.scatterplot(X,Y, label = "Training Data")
plt.legend()
plt.show()

The output of the code is shown here:

Figure 10.8 – Least-squares line fit 
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From the preceding plot, we see that vehicles with higher weights tend to have higher 
horsepower and vice versa. The general trend of the plot is that as the weight of the vehicle 
increases, so does the horsepower. 

Let's repeat the preceding linear regression using scikit-learn. More information about this 
package and its APIs can be found here: https://scikit-learn.org/stable/
user_guide.html#user-guide. Information regarding ordinary least squares 
regression can be found here: https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.LinearRegression.html#sklearn.
linear_model.LinearRegression. 

We will obtain the same β values but with just a few lines of code using scikit-learn: 

import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
df = pd.read_csv("auto_dataset.csv")
X = df["weight"]
Y = df["horsepower"]
X = X.values.reshape(-1,1)
Y = Y.values.reshape(-1,1)

reg.fit(X, Y)
print("The value obtained for beta_o is: ", reg.intercept_)
print("The value obtained for beta_1 is: ",reg.coef_)

The value obtained for beta_o is:  [-12.1834847]
The value obtained for beta_1 is:  [[0.03917702]]

We can also use scikit-learn for prediction, and this can be done in just one line of code, as 
follows. We will use the same weights of 2500 and 2045 as in the previous example and 
hence obtain the same predicted horsepower values:

X_new = np.array([[2500],[2045]])
print(reg.predict(X_new))

[[85.75906307]
 [67.93351937]]

https://scikit-learn.org/stable/user_guide.html#user-guide
https://scikit-learn.org/stable/user_guide.html#user-guide
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
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In this section, we learned about how to obtain the best-fit line for a dataset using Python 
and some of its packages, such as NumPy and scikit-learn. We also learned about how to 
predict a certain value Y given the predictor variable X.  

In the next section, we will learn about fitting least-squares curves to a dataset. This 
applies to cases where the X and Y variables do not have a linear relationship. 

Least-squares curves with NumPy and SciPy
We will now learn how to fit curves to a dataset. For this section, we will investigate the 
relationship between horsepower and mpg for a vehicle. From Figure 10.1, we know that 
the relationship between these two variables is not linear; hence, we will use power 2 of 
our feature variable X as an input to the model. This is called polynomial regression. Here, 
we are using a linear model to fit a non-linear dataset. 

Here's how we will import the required Python packages and select the X and Y of interest 
from the pandas data frame, df:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

#Importing the dataset as a pandas dataframe 
df = pd.read_csv("auto_dataset.csv")

#Selecting the variables of interest
X = df["horsepower"]
y = df["mpg"]

#Converting the series to a column matrix 
X_new = X.values.reshape(-1,1)
y_new = y.values.reshape(-1,1)
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We will be using scikit-learn's PolynomialFeatures class. For more information 
about this class, refer to this link: https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.PolynomialFeatures.
html#sklearn.preprocessing.PolynomialFeatures. This will help us 
to transform our input data by adding a new feature to the dataset – the square of X 
(horsepower), which is a second-degree polynomial. We will use a polynomial of degree 
2 of the form Y = βo + β1 X + β2 X

2:

poly_features = PolynomialFeatures(degree=2, include_
  bias=False)
X_poly = poly_features.fit_transform(X_new)

X_poly contains the original feature (X = horsepower) plus the squared value of the 
feature. We will now use the linear regression model as shown in the previous section,  
to carry forward our analysis:

reg = LinearRegression()
reg.fit(X_poly, y_new)
print("Y ={:.4f} X^2 {:.3f} X + {:.3f}".format(reg.coef_[0,1], 
  reg.coef_[0,0], reg.intercept_[0]))

The output is as follows:

Y =0.0012 X^2 -0.466 X + 56.900

Hence, we have the equation for the best-fit curve, as shown in the preceding output. 

Next, we will use our knowledge of this equation to plot the best-fit line and lay it on the 
top of a scatterplot of the actual data. We will vary the X values between the minimum 
and maximum horsepower values that are present in the dataset for plotting the best-fit 
curve and hence calculate the corresponding Y values using the equation obtained in the 
preceding step: 

start = df["horsepower"].values.min()
stop = df["horsepower"].values.max()
X_plot = np.linspace(start, stop, 1000)
Y_plot = reg.coef_[0,1] * X_plot * X_plot + reg.coef_[0,0] * 
X_plot + reg.intercept_[0]

Equationline = "Y ={:.4f} $X^2$ {:.3f} $X$ + {:.3f}".
  format(reg.coef_[0,1], reg.coef_[0,0], reg.intercept_[0])

sns.scatterplot(X,y, label = "Training Data")
plt.plot(X_plot, Y_plot, "r-", label = Equationline)

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures
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plt.legend()
plt.show()

The output of the code is shown here:

Figure 10.9 – Least-squares curve fit 

The best-fit line for the dataset (X = horsepower ; Y = mpg) is shown here. This line was 
overlayed on top of actual data points to show that the best-fit line is an approximation. 
When we try to predict the Y value for our choice of X, the algorithm will use the 
equation obtained to find us an approximate Y value. It is important to keep in mind that 
the predicted values are less reliable if we are trying to extrapolate outside the range of X 
values for the dataset. 

In this section, we learned about how to fit least-squares curves to a non-linear dataset. 
To do so, we added a new feature variable equal to square of X. We then used the linear 
regression class provided by scikit-learn to find the β parameters. These parameters were 
then used to draw the best-fit curve. It is important to keep in mind that we might run 
into overfitting issues when fitting curves, which means that the prediction made using 
the equation we came up with might not be accurate. 

Now that we know best-fit curves, the next practical step would be to learn about fitting 
least-squares surfaces. 
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Least-squares surfaces with NumPy and SciPy
An appropriate question to ask in this section would be to ask, "Why do we need to 
fit surfaces to a dataset?" It is important since 2D plots are not enough to show the 
relationship between the predictor variables (X1, X2, …., Xn) and the predicted variable 
Y. In many real-life scenarios, Y is affected by more than one X variable, and hence 
to capture such a relationship, we would need a surface plot (3D), which can show 
the relationship between X1, X2, and Y. This relationship between the variables can be 
represented by the following mathematical formulation: 

Y  βo + β1 X1 + β2 X2

Our goal is to find the values for βo, β1, and β2. 

For this section, we will use the horsepower and weight values of a car as input for X1 
and X2 respectively. The output variable will be displacement (Y). We can mathematically 
write this as follows: 

Y  βo + (β1 * horsepower) + (β2 * weight) 

Here's how we will import the required Python packages and select the X and Y of interest 
from the pandas dataframe df:
from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np
from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt

#Importing the csv file and choosing the X and Y variables
df = pd.read_csv("auto_dataset.csv")
Y = df["displacement"]
X = df[["horsepower","weight"]]

Next, we will use the scikit-learn linear regression model to fit the X and Y values. We will 
print the values of the regression coefficients for our reference:
#Fitting the linear regression model
reg = LinearRegression()
reg.fit(X, Y)

# Printing the parameter values obtained after fitting the 
  # model
print("The value obtained for beta_o is: ", reg.intercept_)
print("The value obtained for beta_1 and beta_2 are: ",reg.
  coef_[0] , "and", reg.coef_[1] )
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The value obtained for beta_o is:  -135.95073526530456
The value obtained for beta_1 and beta_2 are:  
  0.9757143655155813 and 0.07671670340152593

Hence, we can write the equation as follows: 

Y  -135.951 + (0.976 * horsepower) + (0.0767 * weight)

Now that we have the model and the coefficients, the next step would be to plot the 
dataset as well as the model obtained (surface) to better understand the process. We will 
need to find the minimum and maximum values for horsepower and weight and then 
obtain 100 equally spaced values between the two values. Once we have these 100 equally 
spaced values, we can then use the preceding equation to obtain the corresponding Y 
values that will be used to make the surface plot. In addition, we will also plot the actual 
dataset that was used for obtaining the β values for comparison:

# Plotting the surface plot
X1_min = df["horsepower"].values.min()
X1_max = df["horsepower"].values.max()
X1_values = np.linspace(X1_min, X1_max, 100)

X2_min = df["weight"].values.min()
X2_max = df["weight"].values.max()
X2_values = np.linspace(X2_min, X2_max, 100)

Y_reg = reg.intercept_ + (reg.coef_[0] * X1_values) + (reg.
  coef_[1] * X2_values)
Y_plot = Y_reg.reshape(-1,1)

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X.horsepower, X.weight, Y, color="red", s=1)
X1_plot, X2_plot = np.meshgrid(X1_values, X2_values)
surf = ax.plot_wireframe(X1_plot, X2_plot, Y_plot, rstride=10, 
  cstride=10)
ax.view_init(50, 150)
ax.set_xlabel('Horsepower')
ax.set_ylabel('Weight')
ax.set_zlabel('Displacement')
plt.legend()
plt.show()



254     Regression Analysis with NumPy and Scikit-Learn

The output of the code is shown here: 

Figure 10.10 – Least-squares surface plot 

The least-squares surface for the dataset (X = horsepower, weight; Y = displacement) is 
shown in the preceding figure. This surface was overlayed on top of actual data points to 
show that the least-squares surface is an approximation. When we try to predict the Y 
value for our choice of X values, the algorithm will use the equation obtained to find us 
an approximate Y value. It is important to keep in mind that the predicted values are less 
reliable if we are trying to extrapolate outside the range of X values for a dataset. 

In this section, we learned about least-squares surfaces and how to implement them on 
a real-world dataset by using Python packages such as scikit-learn. Scikit-learn has a lot 
of other important classes that can be used for machine learning problems; it is always 
a good idea to go through the documentation at https://scikit-learn.org/
stable/modules/classes.html.

https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/classes.html
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Summary 
In this chapter, we learned about regression, the least-squares method, and line, curve, 
and surface fitting. We also learned about how to apply these methods to a real-world 
dataset and how to predict the values for an output variable (Y) given access to some 
historical dataset that has both X and Y values. Caution should be taken if we are trying 
to extrapolate outside the range of X values for a dataset; the predicted values might not 
be reliable. You should now be able to apply these concepts to your own datasets and use 
Python libraries such as SciPy, NumPy, and scikit-learn to carry out regression analysis 
and prediction. 

In the next chapter, we will learn about web searches from both mathematical and 
practical perspectives. We will also look at Google's PageRank algorithm and discuss the 
linear algebra involved. 





11
Web Searches with 

PageRank
Searching the web is one of the first things we learn to do on the internet. The purpose, 
simply, is to find information of a topic of interest, but how does Google, or other search 
engines, take the words we search and effectively return what we want? This is the 
question we aim to answer in this chapter.

More specifically, this chapter discusses web searches from both a mathematical and 
practical perspective. We will first build the mathematical setting for common methods 
for web searches. We'll then look more deeply at Google's PageRank method and the 
linear algebra required. We'll then construct an implementation of PageRank that 
combines this linear algebra with the probabilistic aspects of PageRank we discussed  
in Chapter 5, Elements of Discrete Probability.

In this chapter, we will cover the following topics:

• The development of search engines over time

• How Google's PageRank algorithm works

• Implementing the PageRank algorithm in Python

• Applying the PageRank implementation to real data
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By the end of this chapter, you will have learned how PageRank works, the linear algebra 
basis for it, why it is so effective, and how to implement the algorithm and apply it to  
real-world data. 

Important Note
Please navigate to the graphic bundle link to refer to the color images for  
this chapter.

The Development of Search Engines over time
In this section, we will learn about the development of modern search engines on the 
internet. This will set the stage to learn about Google's PageRank algorithm. But, before 
we do that, let's briefly learn how older search engines worked and their shortcomings so 
that we can see why we need to tap into some deeper mathematics to solve the problem  
of ranking websites based on searches.

In the early 1990s, search engines were relatively simple. The search engine companies 
maintained databases of as many websites as they could. Users would search a word, say, 
chicken, and the search engines would search for websites using the word chicken 
and rank them based on how many times the word chicken appeared on the website.  
As you might suspect, this isn't necessarily the best approach.

There are several problems with these simple methods:

• Web pages where a certain search word occurs frequently are not necessarily what 
people are seeking when they do a web search. An FDA agricultural report might 
say chicken dozens of times, but not many users are likely to want agricultural 
reports.

• It automatically favored web pages with long passages of text, which were more 
likely to have more occurrences of chicken.

• There was little natural language processing, so a search of chicken might not 
return websites with chickens or chicks.

• Unpopular, little-used web pages with the word chicken were just as likely to 
show up in search results as popular websites that many users visit.

• It was easy to game the system: unscrupulous webmasters would add huge passages 
of transparent text full of commonly searched words such as chicken written 
hundreds of times or store such words in large passages of metadata just to drive 
traffic to their website.
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Through the 90s, a bit more diversity in methods proliferated. One innovation was to 
allow searches with Boolean functions such as AND, OR, and NOT—so, you could search 
the following:

• chicken AND sandwich returns web pages with both words that hungry users 
may be seeking.

• chicken OR rooster returns web pages with either word that users interested 
in animals may be seeking.

• chicken AND NOT egg returns web pages with the word chicken but not the 
word egg to filter out web pages related to eggs from the web pages mentioning 
chickens.

In addition, some search engines introduced fuzzy logic, which could return web pages 
that are relevant to the search but not strictly satisfying the search. For example, a search 
of chicken may return web pages with the word chicken as well as web pages with the 
words chicken, chick, chicks, or even nuggets, wings, or poultry.

These innovations improved the quality of web searches, but they were still not nearly 
as effective as today's search engines, which seem to have a knack for returning the web 
pages you actually want. 

This is not meant to be a comprehensive description of search engines in the mid-to-early 
1990s, as there were some other algorithms used by the many search engines of the time—
Yahoo, Lycos, Excite, and the like. But this should give you an understanding that the 
relatively simplistic search algorithms of the time period had many challenges.

To make things worse, the internet was growing exponentially, meaning web searches 
began returning hundreds, thousands, even millions of web pages. If search engines were 
returning so many web pages without using some more reasonable criteria for deciding 
how relevant or how important certain web pages were to move them to the top of the 
list when users searched, they were not very likely to return the right web pages without 
requiring users to sift through pages and pages of search results.

These failings prompted the need for a different kind of ranking method to move the 
"best" web pages to the top of the list when users search. With this in mind, we will 
continue to see how modern ranking algorithms, PageRank in particular, use linear 
algebra and probability to find the importance of web pages on the basis of which other 
websites link to them.
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Google PageRank II
In this section, we will continue learning about Google's PageRank algorithm, which 
we started to look at in Chapter 5, Elements in Discrete Probability. As we discussed in 
that chapter, two students at Stanford University and later founders of Google, Larry 
Page and Sergey Brin, along with some researchers at Stanford, Rajeev Motwani and 
Terry Winograd, tapped into some existing academic literature on information retrieval 
in linked documents and merged several innovations to adapt the ideas for use in web 
searches.

The algorithm they developed, PageRank, was so effective that Google soon became totally 
dominant in the field of search engines in the late 1990s to early 2000s. This innovative 
PageRank algorithm still forms a part of Google's searching methods, although their 
methods have, of course, progressed significantly in the past 20 years by implementing 
information from user histories, user location, and the like in determining which websites 
are most likely relevant to users.

Without further ado, let's dive into learning just how PageRank works!

In a basic search engine using the PageRank algorithm, a user searches some terms and all 
the web pages with the terms, and perhaps web pages matching according to some fuzzy 
criteria, are returned. Then, the PageRanks of all the websites are found and sorted from 
highest to lowest. Finally, the results are displayed to the user in this descending order. 
Ideally, this means the most relevant websites will be shown to the user first.

To see how PageRank works under the hood, let's first quickly review what we learned 
about the PageRank algorithm in Chapter 5, Elements of Discrete Probability. Suppose  
we have an "internet" made up of a set of web pages. We will call the "internet" I and 
assume it has some finite number, N, of distinct web pages. In the real internet, this  
N numbers in the billions! We will refer to these web pages as follows:

𝐼𝐼 = {𝑊𝑊1,𝑊𝑊2,… ,𝑊𝑊𝑁𝑁} 

On I, we define two functions:

• Outgoing links, C: I → {0, 1, 2, …, N - 1}, where C(Wj) is the number of links leaving 
the jth web page, where self-links do not count and multiple links to the same web 
page count as a single link.

• PageRank, PR: I → [0,1], where we have PR(Wj). It is calculated as follows:

𝑃𝑃𝑃𝑃(𝑊𝑊𝑗𝑗) =  1 − 𝑑𝑑
𝑁𝑁  +  𝑑𝑑 ∑ 𝑃𝑃𝑃𝑃(𝑊𝑊𝑖𝑖)

𝐶𝐶(𝑊𝑊𝑖𝑖)
𝑊𝑊𝑖𝑖∈𝑀𝑀(𝑊𝑊𝑗𝑗)

, 
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Here, M(Wj) is the set of web pages linking to Wj. In other words, PageRank is (1 – d)/N 
plus d times the sum of ratios of PageRank to outgoing links for each other web page 
linking to Wj. The constant d ∈  (0,1) is called the damping factor. The authors set d = 0.85 
in their original paper, although Google may have adjusted it since then. Regardless of the 
value of d, it can be shown that the function PR is a probability mass function, assigning 
probabilities to W1, W2, ..., WN. Note that, by definition, the probabilities assigned by  
a probability mass function sum to 1.

Important Note
Note that there is some confusion in the literature about the first term of the PR 
calculation: sometimes the N is left out of the denominator. This does not have 
an important practical impact since we simply rank websites in descending 
order based on the outputs. However, the resulting PageRanks do not form  
a probability mass function without this N and so it is mathematically not quite 
so clean.

The idea behind PageRank is to take an imaginary "person" navigating this "internet" 
who will randomly click links and will eventually stop on a certain web page. The value 
d represents the probability that this person will click the next link at each step. The 
PageRank of a web page, PR(Wi), represents the probability that this randomly clicking 
surfer will stop on web page Wi.

The PageRank algorithm initializes all the PageRanks to be equal, meaning they will 
initially be 1/N since they must add up to 1 in order for them to make up a probability 
distribution. Then, the PageRank algorithm will redo this calculation for each web page 
periodically to update the PageRank of each website based on changes in link structure 
and traffic patterns over time.

Important Note
In many implementations of the PageRank algorithm, it will actually compute 
the formulas over and over until all the PageRanks converge to a steady state 
where further calculations of the formula result in the same outputs, which 
tends to happen. When patterns in the links change, it is possible to carry out 
this procedure again to find the new PageRanks.
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In Chapter 5, Elements of Discrete Probability, we created a small "internet" of just five web 
pages with a fixed linking structure. We have replicated the figure of this small "internet" 
represented as a directed graph in Figure 11.1, but with three changes:

• We have color-coded the vertices representing web pages and edges representing 
links between web pages.

• We have separated bidirectional arrows into separate arrows when two web pages 
each have links to the opposite web page.

• We added weights to the edges representing the amount of the PageRank of  
a source website, Wi, will be passed on to the web pages they link: that is, simply  
the following:

1
𝐶𝐶(𝑊𝑊𝑖𝑖)

 

This weight has a practical impact: if the web page simply links a huge number of other 
web pages, the full PageRank of the web page with the links will not have such a big 
impact on the rest of the "internet." This prevents a strategy for gaming the system: 
without this, web pages would try to have themselves added to giant web page indexes, 
which could increase their PageRank for a reason that probably has little to do with how 
relevant the web page is to the user's search.

This makes our diagram a directed network rather than a directed graph, as we see in the 
following figure:

Figure 11.1 – A directed network representing an "internet" of five web pages, their links, and the 
proportion of PageRank carried over each link. All web pages, links, and weights are color-coded
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In Chapter 5, Elements of Discrete Probability, we initialized the PageRanks to 1/5 = 0.2 
and used the linking structure to compute the PageRanks using the preceding functions 
for one iteration. The obtained PageRank are shown as follows: 

𝑃𝑃𝑃𝑃(𝑊𝑊1) = 0.34 

𝑃𝑃𝑃𝑃(𝑊𝑊2) = 0.07 

𝑃𝑃𝑃𝑃(𝑊𝑊3) = 0.07 

𝑃𝑃𝑃𝑃(𝑊𝑊4) = 0.38 

𝑃𝑃𝑃𝑃(𝑊𝑊5) = 0.13 

But we did this calculation by hand, which is not ideal, so we would like to replicate this 
calculation with matrix arithmetic.

As we learned in Chapter 8, Storage and Feature Extraction of Graphs, Trees, and Networks, 
the directed network of our small "internet" can be represented as a matrix:

Figure 11.2 – The transition probability matrix of our small "internet"

We learned previously that matrix A is usually called the cost matrix of the network but 
that it tends to be called a different name in different areas. Here, matrix A is typically 
called the transition probability matrix or importance matrix. It shows how PageRank 
transmits across all the outgoing links from each web page.

Each row of the transition probability matrix represents the proportion of the PageRank of 
a specific web page that will be transmitted to other web pages in future iterations, so they 
must add up to 1 to split the transmission of PageRank into parts making up the whole 
PageRank. Each column represents the incoming PageRank proportions transmitted from 
other web pages to a specific web page, so there is no need for them to add up to 1.
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As we systematize these calculations into matrix algebra, we also need to represent the 
PageRanks as a vector. We will start with the initialized PageRanks all equal to 1/N = 0.5. 
We can represent this as follows:

Figure 11.3 – The initial PageRank vector

We'll define another matrix, U, which will actually be used in the PageRank calculations, 
and call it the update matrix, using the following formula:

Figure 11.4 – The matrix used in PageRank calculations

Recall from what we learned in Chapter 6, Computational Algorithms in Linear Algebra, 
that the T superscript indicates the transpose of the matrix where the rows are swapped 
with the columns, and we learned how to add and multiply matrices. We can replicate the 
PageRank formulas for all the websites in the next iteration at once as follows:

𝐯𝐯𝑖𝑖 = 𝐔𝐔𝐯𝐯𝑖𝑖−1 

Let's write some Python code to apply this formula. Recall that the way we learned how  
to do matrix multiplication is to use NumPy for our small "internet" of five web pages,  
N = 5, and the default damping factor, d = 0.85:

# import the NumPy library
import numpy

# transition probability matrix
A = numpy.array([[0, 0.25, 0.25, 0.25, 0.25],
                 [0.5, 0, 0, 0.5, 0],
                 [0.33, 0, 0, 0.33, 0.33],
                 [1, 0, 0, 0, 0],
                 [0, 0, 0, 1, 0]])
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# initialize the PageRank vector
v = numpy.array([[0.2], [0.2], [0.2], [0.2], [0.2]])

# the damping factor
d = 0.85

# the size of the "Internet"
N = 5

# compute the update matrix
U = d * A.T + (1 - d) / N

# compute the new PageRank vector
v = numpy.dot(U, v)

# print the new PageRank vector
print(v)

In this code, we first added the transition probability matrix and initialized the PageRank 
vector, damping factor, and size of the "internet." Then, we computed the update matrix. 
Finally, we computed the new PageRank vector after one iteration and printed it.

The output of the code is as follows:

[[0.3411]
 [0.0725]
 [0.0725]
 [0.3836]
 [0.1286]]

Rounding these values to two decimal places gives exactly the same as what we calculated 
by hand in Chapter 5, Elements of Discrete Probability, and replicated in the present 
chapter previously.

As we mentioned, it is common with PageRank implementations to run the PageRank 
update over and over until they stop changing:

# initialize the PageRank vector
v = numpy.array([[0.2], [0.2], [0.2], [0.2], [0.2]])

# print the initial vector
print('PageRank vector', 0, 'is', v.T)
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# compute the PageRank vector for 15 iterations
for i in range(15):
    # compute the next PageRank vector
    v = numpy.dot(U, v)

    # round the PageRank vector to 3 places
    v = numpy.round(v, 3)
    
    # print the PageRank vector
    print('PageRank vector', i + 1, 'is', v.T)

This code initializes the PageRank vector, prints it, carries out the PageRank update for 
15 iterations, rounds them, and prints each one. We print the transpose of the PageRank 
vector rather than the original simply so that the output does not take up too much space, 
which allows us to observe patterns in the evolution of the PageRanks more readily.

The output of the code is as follows:

PageRank vector 0 is [[0.2 0.2 0.2 0.2 0.2]]
PageRank vector 1 is [[0.341 0.073 0.073 0.384 0.129]]
PageRank vector 2 is [[0.408 0.102 0.102 0.264 0.123]]
PageRank vector 3 is [[0.326 0.117 0.117 0.293 0.145]]
PageRank vector 4 is [[0.362 0.099 0.099 0.305 0.132]]
PageRank vector 5 is [[0.359 0.107 0.107 0.289 0.135]]
PageRank vector 6 is [[0.351 0.106 0.106 0.296 0.136]]
PageRank vector 7 is [[0.356 0.104 0.104 0.295 0.134]]
PageRank vector 8 is [[0.354 0.105 0.105 0.293 0.135]]
PageRank vector 9 is [[0.353 0.105 0.105 0.294 0.134]]
PageRank vector 10 is [[0.354 0.105 0.105 0.293 0.134]]
PageRank vector 11 is [[0.353 0.105 0.105 0.293 0.134]]
PageRank vector 12 is [[0.353 0.105 0.105 0.293 0.134]]
PageRank vector 13 is [[0.353 0.105 0.105 0.293 0.134]]
PageRank vector 14 is [[0.353 0.105 0.105 0.293 0.134]]
PageRank vector 15 is [[0.353 0.105 0.105 0.293 0.134]]
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As you can see, repeating the update over and over results in the PageRank vector 
converging to a certain set of numbers and not budging any further after about 10 
iterations, as follows:

Figure 11.5 – The PageRank vector to which the PageRank updates converged

It should be stated that the calculations do continue to cause the PageRank vector to 
change, but the changes occur more than three places beyond the decimal point. So, 
practically speaking, we have found a steady state or equilibrium for the PageRanks.

What does all of this mean? If the five pages were returned by our search engine and 
we wanted to rank them and display the web pages sorted by PageRank from highest to 
lowest, our user would see web page W1, followed by W4, followed by W5, followed by W2 
and W3. We could break the tie at the bottom by realizing there is actually a difference in 
the PageRank if we look further beyond the decimal point. In a large-scale problem such 
as the actual internet, it would be incredibly unlikely to actually have equal PageRanks. 
However, if they were equal to the level of precision we have chosen to use for our 
computations, randomly breaking the tie would be practically fine.

As you have seen, we had to do a lot of computations to come to the preceding conclusion 
for a small five-web page "internet." Imagine the number of computations carried out by 
Google when they use the PageRank algorithm on the real internet and its billions of web 
pages before showing you the results for your query/search!

In this section, we learned about how the PageRank algorithm uses linear algebra to assign 
ranks to web pages returned by a web search. This allows the highly ranked web pages to 
be shown at the top of the list so that users can see the most relevant web pages first rather 
than having to go browsing through pages upon pages of irrelevant search results to find 
what they need.

We have applied the PageRank ideas to a small problem, but we will continue to build  
a realistic implementation of the PageRank algorithm in Python in the next section.
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Implementing the PageRank algorithm  
in Python
In this section, we will take the insights we learned about the PageRank algorithm in the 
previous sections to write an effective Python implementation of the algorithm.

As we saw previously, the idea of the PageRank algorithm is to do some calculations to 
update the PageRank vectors over and over until they reach a steady-state PageRank 
vector. But we just ran it 15 times, looked at the numbers, and stopped when the updates 
become so small as to be insignificant.

However, there are a few obstacles to implementing this on a real, large-scale problem:

• If the "internet" of web pages is large, such as with the real internet, we could not 
really look at millions or billions of PageRanks in the updates and find when they 
have stopped changing.

• We cannot know in advance how many iterations we need to run for the PageRanks 
to converge to a steady state.

• We manually defined the initial state of the PageRank vector, which is impractical 
for a huge "internet."

• It depended specifically on the linking structure of the "internet" we considered, 
which would change in time in reality.

• We specified the size of the internet, N, and damping factor, d, manually.

In realistic implementations, we need to deal with all of these issues with our code:

• For problems 1–2, we need to find a way to automate the detection of when the 
PageRank algorithm converges to a steady state.

• For problem 3, we need to initialize the PageRank vector programmatically.

• For problems 4–5, we can write a function that takes the transition probability 
matrix A and damping factor d as inputs and finds the size of the "internet," N,  
from the matrix.

These latter two solutions are easy to implement, but solving the first two problems 
requires us to introduce some additional mathematics. The Euclidean norm of a vector  
is as follows:

𝐯𝐯 = [𝑣𝑣1 𝑣𝑣2 ⋯ 𝑣𝑣𝑁𝑁]𝑇𝑇 
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It measures the length of a vector in an N-dimensional space and is computed as follows:

‖𝐯𝐯‖ = √𝐯𝐯 ⋅ 𝐯𝐯 = √𝑣𝑣12 + 𝑣𝑣22 +⋯+ 𝑣𝑣𝑁𝑁𝑡𝑡  

Notice each component of the vector adds a positive value to the norm. If the components 
are near 0, then the norm will be near 0. If some of the components are large, then the 
norm will be large. This idea can be used to compute the distance between two vectors as 
well. If we define vector w similarly, the distance between vectors v and w is as follows:

‖𝐯𝐯 −𝐰𝐰‖ = √(𝑣𝑣1 − 𝑤𝑤1)2 + (𝑣𝑣2 −𝑤𝑤2)2 +⋯+ (𝑣𝑣𝑁𝑁 −𝑤𝑤𝑁𝑁)2 

So, here, if the vj – wj differences are small, then the distance will small.

This mathematical tool gives us a way to measure how different vectors are. As we have 
learned, the PageRank algorithm is an iterative process that updates PageRank vectors 
over and over until they settle into a steady state with the following formula:

𝐯𝐯𝑖𝑖 = 𝐔𝐔𝐯𝐯𝑖𝑖−1 

To solve problems 1–2 outlined previously, we can compute updates until the distance 
between vectors vi and vi – 1 is very small. Our function can actually accept an input of 
a small number, ε, called the error threshold and have the algorithm stop updating the 
PageRank vectors when the differences are smaller than this small error term, that is, 
when the following is true:

‖𝐯𝐯𝑖𝑖 − 𝐯𝐯𝑖𝑖−1‖ < 𝜀𝜀 

This means we will need to save the PageRank vector from before each update so that  
we can find the difference between them.

Let's write some code implementing solutions to all of these problems by writing the 
PageRank algorithm as a function. It will be a little long, so we will break it down into 
parts and explain each part as we go. First, we write some documentation about the 
function:

# The PageRank algorithm for ranking search results
#
# INPUTS
# A - the transition probability matrix
# d - the damping factor, default = 0.85
# eps - the error threshold, default = 0.0005
# maxIterations - the maximum iterations it can run before 
  # stopping
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# verbose - if true, the algorithm prints the progress of 
  # PageRank
# 
# OUTPUTS
# vNew - the steady state PageRank vector

Next, we define the function, find the size of the "internet," and initialize several variables 
that we need:

def PageRank(A, d = 0.85, eps = 0.0005, maxIterations,
             verbose = False):
    # find the size of the "Internet"
    N = A.shape[0]
    
    # initialize the old and new PageRank vectors
    vOld = numpy.ones([N])
    vNew = numpy.ones([N])/N
    
    # initialize a counter
    i = 0

Then, we find the update matrix, U:

    # compute the update matrix
    U = d * A.T + (1 - d) / N

Then, we run the update over and over until the change in the PageRank vectors from 
iteration to iteration is sufficiently small:

    while numpy.linalg.norm(vOld - vNew) >= eps:
        # if the verbose flag is true, print the progress at 
        # each iteration
        if verbose:
            print('At iteration', i, 'the error is',
              numpy.round(numpy.linalg.norm(vOld - vNew), 
                3), 'with PageRank', numpy.round(vNew, 3))
            
        # save the current PageRank as the old PageRank
        vOld = vNew
        
        # update the PageRank vector
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        vNew = numpy.dot(U, vOld)
        
        # increment the counter
        i += 1

If the code does not converge within maxIterations, we will stop, print the error, and 
return the current PageRank vector and iteration:

# if it runs too long before converging, stop and notify the 
  # user
        if i == maxIterations:
            print('The PageRank algorithm ran for',
                   maxIterations, 'with error',
                    numpy.round(numpy.linalg.norm(vOld - vNew), 
                     3))
            
            # return the PageRank vector and the 
            return vNew, i

Finally, we return the steady-state PageRank vector and the number of iterations it took to 
converge:

    # return the steady state PageRank vector and iteration 
      # number
    return vNew, i

Let's see whether it works with the example we used previously:

# transition probability matrix
A = numpy.array([[0, 1/4, 1/4, 1/4, 1/4],
                 [1/2, 0, 0, 1/2, 0],
                 [1/3, 0, 0, 1/3, 1/3],
                 [1, 0, 0, 0, 0],
                 [0, 0, 0, 1, 0]])

# Run the PageRank algorithm with default settings
PageRank(A)

The output is as follows:

(array([0.3565286 , 0.10584025, 0.10584025, 0.29600666, 
  0.13578424]), 11)
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We confirm this gives the same results we found previously in 11 iterations. So, what else 
can we do with the algorithm?

Suppose the structure of our small "internet" changes by changing the linking structure, 
which happens all the time in reality when people modify their web pages and create new 
web pages. Search engines periodically crawl the internet to find these changes.

If web page W3 suddenly went viral and all the other web pages added links to it, this new 
"internet" could be represented by the following directed network:

Figure 11.6 – A directed network representing an "internet" of five web pages after web page W3 has gone 
viral and been linked on every other web page in the "internet"

Let's try PageRank again to see how the PageRanks will change due to web page  
W3 becoming more popular. We will use the same calculations as previously but use 
a different transition probability matrix corresponding to the new state of our small 
internet:

# transition probability matrix
B = numpy.array([[0, 1/4, 1/4, 1/4, 1/4],
                 [1/3, 0, 1/3, 1/3, 0],
                 [1/3, 0, 0, 1/3, 1/3],
                 [1/2, 0, 1/2, 0, 0],
                 [0, 0, 1/2, 1/2, 0]])

# Run the PageRank algorithm with default settings
PageRank(B, verbose = True)
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The output is as follows:

(array([0.2365497 , 0.08030807, 0.27603383, 0.24860661, 
  0.15850179]), 8)

Since web page W3 has increased in popularity, its PageRank should go up because it is 
more likely that users are looking for that web page. As you can see, its PageRank moved 
up from 0.105 to 0.276.

In this section, we have written a realistic implementation of the PageRank algorithm, 
which takes in a transition probability matrix, initializes the PageRanks of each web page 
to the same proportion, and returns the steady-state PageRank as well as the number of 
iterations it took to converge.

In the next section, we will use our implementation on a much larger scale problem to see 
how well it works.

Applying the Algorithm to Real Data
Let's use our Python implementation of the PageRank algorithm to some larger-scale data. 
We will use a dataset shared by J. Kleinberg at Cornell by crawling the web to find web 
pages containing the word California. It is a text file in the following form:

Type Source Destination
n 0 http://www.berkeley.edu/
n 1 http://www.caltech.edu/
…
n 9663 http://www.cs.ucl.ac.uk/external/P.Dourish/hotlist.html
e 0 449
e 0 450
…
e 9663 7907

The first part contains 9,663 web pages that have the word California, and the rest is 
an adjacency list for the graph representing the "internet" of these 9,663 web pages. For 
example, take the following line:

e 0 499

This means web page 0 has a link to web page 499. In order to implement PageRank on 
this dataset, we need to create an adjacency matrix.
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Let's use some Python code to read this data file into a pandas DataFrame and display it:

# import the pandas library
import pandas

# read the txt file into a dataframe
data = pandas.read_csv("California.txt", delimiter=' ')

# display the dataframe
data

The output is as follows:

    Type    Source     Destination
0   n       0          http://www.berkeley.edu/
1   n       1          http://www.caltech.edu/
2   n       2          http://www.realestatenet.com/
3   n       3          http://www.ucsb.edu/
4   n       4          http://www.washingtonpost.com/wp-srv/
                         national/...
...  ...    ...        ...
25809       e          9663  1806
25810       e          9663  266
25811       e          9663  7905
25812       e          9663  70
25813       e          9663  7907

25814 rows × 3 columns

Next, we preprocess the data to extract the adjacency list, drop all the e strings in the 
first column, convert the remaining numerical portion into a NumPy array, and store the 
numbers as integers:
# preprocess the data

# select only the rows with type 'e'
adjacencies = data.loc[data['Type'] == 'e']

# drop the 'Type' column
adjacencies = adjacencies.drop(columns = 'Type')

# convert the adjacency list to a NumPy array
adjacencies = adjacencies.to_numpy()
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# convert the adjacency list to integers
adjacencies = adjacencies.astype('int')

# print the adjacency list
print(adjacencies)

The output is as follows:

[[   0  449]
 [   0  450]
 [   0  451]
 ...
 [9663 7905]
 [9663   70]
 [9663 7907]]

Next, let's convert the adjacency list into an adjacency matrix:

# convert the adjacency list to an adjacency matrix

# find the number of webpages and initialize A
N = numpy.max(adjacencies) + 1
A = numpy.zeros([N, N])

# iterate over the rows of the adjacency list
for k in range(adjacencies.shape[0]):
    # find the adjacent vertex numbers
    i, j = adjacencies[k,]
    
    # put 1 in the adjacency matrix
    A[i, j] = 1

Next, we need to convert C into the transition probability matrix by dividing each 1 
corresponding to an outgoing link by the total number of outgoing links from that web 
page. In other words, we divide each row by its row sum:

# convert A to the transition probability matrix

# divide each row of A by its row sum
rowSums = A.sum(axis = 1)[:,None]

# divide A by the rowSums
C = numpy.divide(A, rowSums, where = rowSums != 0)
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Next, let's run PageRank on this transition probability matrix:

# run PageRank
v, i = PageRank(A)

# print the steady state PageRank vector and iteration number
print(v)
print(i)

The output is as follows:

[2.79688870e-05 6.29671046e-06 2.06171425e-07 ... 9.48337601e-
  08 9.48337601e-08 9.48337601e-08]
14

As we can see, feeding this large transition probability matrix of dimension 9,663 by 9,663 
converges to a steady-state PageRank vector in 14 iterations.

We will then sort the PageRanks from highest to lowest and save the indices of the  
sorted list:

# sort the PageRanks in ascending order
ranks = numpy.argsort(v)

# find the PageRanks in descending order
ranks = numpy.flip(ranks)

Then, let's return the top 10 web pages containing the word California:

# return the URLs of the top few webpages
rankedPages = pandas.DataFrame(columns = ['Type', 'Source', 
  'Destination'])

# add the top 10-ranked webpages
for i in range(10):
    row = data.loc[(data['Type'] == 'n')
                   & (data['Source'] == ranks[i])]
    rankedPages = rankedPages.append(row)
    
# display the top 10
rankedPages.drop(columns = ['Type', 'Source'])
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A screenshot of the output is as follows:

Figure 11.7 – The top 10 web pages containing the word "California," ranked from  
highest to lowest PageRank

These results make quite a lot of sense. Rather than just returning web pages that say 
California frequently, these websites are all prominent entities in California. Most 
of the websites are from universities in the University of California system, which are 
all quite large universities that are linked by many other web pages. The last site is 
the Southern California Association of Governors, which is a metropolitan planning 
organization that provides large amounts of public data, meaning it is likely linked to by 
many web pages.

We have now applied our Python implementation of the PageRank algorithm to  
a real-world search example. Surprisingly, it converged very quickly, within a few seconds 
on a standard PC.



278     Web Searches with PageRank

Summary
In this chapter, we learned about the PageRank algorithm developed in the late 1990s by 
the future founders of Google and their colleagues at Stanford. It revolutionized the world 
of search engines by providing an effective way to sort search results in such a way that 
much more relevant web pages to users' searches could be displayed at the top of the list.

We began by reviewing how search engines worked before PageRank, some prior 
innovations, and the general shortcomings of web search before PageRank.

Then, we moved on to applying a single PageRank update for a small "internet" of just five 
web pages introduced in Chapter 5, Elements of Discrete Probability. Instead of computing 
the formulas one by one by hand, we wrote a matrix form of the calculation and showed 
that it replicated the results from the previous chapter. We also learned that PageRank 
usually runs over and over until the PageRank vector converges to a steady state, which  
we did by running the updates for an arbitrary number of times until we saw it converge 
by inspection.

In the next section, we wrote a much better Python implementation of the PageRank 
algorithm, which detected convergence automatically by using a while loop that ran 
until the PageRank vectors on two successive iterations were sufficiently similar using the 
Euclidean norm. Next, we considered a scenario where one of the web pages in our small 
"internet" went viral and accumulated links from the other web pages, which resulted in 
the PageRank of this web page increasing because it had become a more likely landing 
spot for users.

Lastly, we brought in a large, real dataset of 9,663 web pages containing the word 
California and an adjacency list corresponding to links from one web page to another. 
We preprocessed the data to turn the adjacency list into an adjacency matrix. We further 
processed that into a transition probability matrix and ran the PageRank algorithm on 
this large example. It converged quickly and yielded some pretty intuitive results, ranking 
some prominent websites at the top.

In the next and final chapter of the book, we will learn about the method of principal 
components analysis (PCA), which is a method for reducing the dimensionality of data. 
This is quite an important task in machine learning.
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Component Analysis 
with Scikit-Learn

In this chapter, we will learn about principal component analysis (PCA), which is a core 
machine learning technique that reduces the dimensionality of large datasets to determine 
which variables can best explain strong patterns in data. We will first introduce some 
mathematical concepts about orthogonal matrices and bases. Then, we will explain the 
method and look at the scikit-learn library's implementation of PCA. Lastly, we will apply 
PCA to some real-world data.

In this chapter, we will cover the following topics: 

• Understanding eigenvalues, eigenvectors, and orthogonal bases 

• The principal component analysis approach to dimensionality reduction 

• The scikit-learn implementation of PCA

• An application of PCA to real-world data 

By the end of this chapter, you will have learned the intuition and mathematics behind 
PCA. You will also learn about the scikit-learn library's implementation of PCA and apply 
it to a real-world dataset. 
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Important note
Please navigate to the graphic bundle link to find the color images for  
this chapter.

Understanding eigenvalues, eigenvectors,  
and orthogonal bases 
In this section, we will learn about the mathematical concepts behind PCA, such as 
eigenvalues, eigenvectors, and orthogonal bases. We will also learn how to find the 
eigenvalues and eigenvectors for a given matrix. 

Many real-world machine learning problems involve working with a lot of feature 
variables; sometimes in the millions. This not only makes it harder for us to store the data 
due to its massive size but also leads to the slower training of machine learning models, 
making it harder for us to find an optimal solution. In addition, there is  
a chance that you are overfitting your model to the data. This problem is often referred to 
as the curse of dimensionality in the field of machine learning. 

A solution to this curse of dimensionality is to reduce the dimensionality of datasets 
that have many feature variables. Let's try to understand this concept with the help of 
an example dataset: pizza.csv. This dataset can have 7 feature variables and 300 
observations, which are categorized into 10 classes – pizza produced by 10 different 
pizza companies (companies A, B, C, D, E, F, G, H, I, and J). The original dataset along 
with the description can be found at https://www.kaggle.com/shishir349/
can-pizza-be-healthy. 

The columns of the dataset are as follows: 

• brand: The names of the different pizza brands

• moisture: The water content per 100 grams of pizza

• protein: The protein content per 100 grams of pizza

• fat: The fat content per 100 grams of pizza

• ash: The ash content per 100 grams of pizza

• sodium: The sodium content per 100 grams of pizza 

• carbohydrates: The carbohydrate content per 100 grams of pizza

• calories: The calorie content per 100 grams of pizza

https://www.kaggle.com/shishir349/can-pizza-be-healthy
https://www.kaggle.com/shishir349/can-pizza-be-healthy
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We will first import the dataset before we begin exploring it and later apply PCA to it to 
see how different pizza companies produce pizzas with different nutrient contents:

import pandas as pd 
dataset = pd.read_csv('pizza.csv')
dataset.head()

We get the following table as the output when the preceding code is executed:

Figure 12.1 – Feature variables for the pizza dataset

We have seven feature variables in the preceding example; even though this sounds like 
a small number, it can have many correlated variables (Figure 12.2), which will increase 
the number of variables without adding much value. Dropping one or more of these 
features or combining our input variables will help in reducing the dimensions and make 
the problem more tractable. This is called feature elimination. A downside of this method 
is that we will eliminate any benefits that the dropped variables would have brought to 
our model. The following method is used to find the pairwise correlation between all the 
columns in a DataFrame:

dataset.corr()

The preceding code generates a correlation matrix as shown in the following figure:

Figure 12.2 – Correlation matrix for the pizza dataset 

A correlation matrix is a square and symmetrical matrix that has a value of 1 along  
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its diagonal, which shows that each variable is perfectly correlated to itself. A correlation 
coefficient of 1 means that two variables are highly positively correlated, and a correlation 
coefficient value of -1 suggests that they are negatively correlated – when one value 
increases, the other decreases, and vice versa. Usually, it is hard to find variables are have 
a correlation coefficient of 1, so the closer it is to 1 or -1, the stronger the relationship, and 
vice versa. 

The same variables are present in both the rows and columns of this matrix and show 
how each of the variables are correlated to another variable in the dataset. For example, 
the correlation coefficient between the protein and ash content is 0.824, which shows that 
they are highly positively correlated. This means that if a pizza sample has higher protein 
content, then it is more likely to have higher ash content, and vice versa. 

Another way to achieve dimensionality reduction is to perform feature extraction on 
the dataset. In this method, we create new feature variables that are a combination of the 
original independent feature variables. We then rank these new feature variables based on 
how well they capture the variation in the original dataset. Here we have an option to only 
keep a certain number of the new feature variables, dropping the least important ones and 
still retaining the valuable parts of the old feature variables. PCA is used for this purpose 
and is a feature extraction algorithm. 

Hence, the goal of dimensionality reduction is to reduce the number of feature variables 
while preserving as much information as possible for a dataset, which naturally comes at 
the expense of accuracy. This can be summed up as follows: increasing the simplicity of 
the machine learning model at the cost of a little reduction in accuracy.

Now that we have high-level knowledge of the problems that arise due to higher 
dimensions and know that the number of dimensions can be reduced, we will investigate 
the mathematical basis for these concepts. 

An eigenvector v of a matrix A is a vector with a very special property: if you multiply the 
eigenvector by the matrix A, it maintains its original direction (the direction in which the 
vector was pointing initially before the matrix multiplication), as shown in Figure 12.3 
and Figure 12.4. However, the multiplication may squish, or stretch, and may reverse the 
eigenvector by a scalar factor. This scalar factor by which the eigenvector is squished  
or stretched is called an eigenvalue. The mathematical representation is shown here:

Figure 12.3 – Mathematical representation
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By solving the preceding equation, we can find the value of the eigenvalues and the 
corresponding eigenvectors of A. The equation to solve to find the eigenvalues and 
eigenvectors is shown here:

Av = (λI)v

(A – λI)v = 0

Here I is the identity matrix and v is a non-zero vector. 

Non-zero solutions exist only if (A – λI) is a singular matrix, which means that the 
determinant of (A – λI) is 0. Hence, the eigenvalues of A are roots of the polynomial  
det(A – λI). The number of eigenvalues is at most the number of dimensions. Figure 12.3 
shows a vector v in a two-dimensional X-Y coordinate plane:

𝐯𝐯 = [11] 

The preceding vector is plotted as follows:

Figure 12.4 – Vector is a two-dimensional space
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Now, let's apply a transformation A to the vector shown previously: 

𝐀𝐀 = [1 1
1 1] [

1
1] 

𝐀𝐀𝐀𝐀 = [1 1
1 1] [

1
1] = [22] = 2 [11] = 𝜆𝜆𝐀𝐀 

From the preceding computation, we can see that multiplying by A doubled the length of 
vector v, but the direction did not change, as shown in Figure 12.5:

Figure 12.5 – Vector after undergoing transformation

Hence, we can say that the eigenvalue is 2 and the eigenvector is [11] . This idea of 

eigenvalues and eigenvectors holds true for higher dimensions as well. 

Let's try to find the eigenvalues and eigenvectors for a matrix A using Python:

A = [3 1
1 3] 
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The code for finding eigenvalues and vectors for the preceding matrix is as follows:

import numpy as np
A = np.array([[3,1], [1,3]])
l, v = np.linalg.eig(A)
print("The eigenvalues are:\n ",l)
print("The eigenvectors are:\n ", v)

The output gives us the eigenvalues as well as the corresponding eigenvectors:

The eigenvalues are:
  [4. 2.]
The eigenvectors are:
  [[ 0.70710678 -0.70710678]
 [ 0.70710678  0.70710678]]

After going through the preceding exercise, you might ask a very important question: why 
do we need to transform vectors? Transformations are important since they can simplify 
problems by just rotating the axes so that we can have a simpler coordinate system to  
work with. 

Let's now understand what orthogonal bases are. By the end of this section, you will have 
the basics that will be helpful while doing PCA for dimensionality reduction. 

The standard basis of the d-dimensional space is made up of the following set of vectors:

𝐞𝐞1 = [
1
0
⋮
0
] , 𝐞𝐞2 = [

0
1
⋮
0
] , … , 𝐞𝐞𝑑𝑑 = [

0
0
⋮
1
] 

Any datapoint in d-dimensional space (c1, c2, …, cd) can be represented as

[
𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑑𝑑
] = 𝑐𝑐1𝐞𝐞1 + 𝑐𝑐2𝐞𝐞2 +⋯+ 𝑐𝑐𝑑𝑑𝐞𝐞𝑑𝑑 

if we choose to represent it in terms of the standard basis. This type of expression is called 
a linear combination of the vectors e1, e2, …, ed. In general, any set of d vectors that can 
construct all points in the d-dimensional space as linear combinations is called a basis.
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The idea of PCA is to change the basis used to represent the points in a more efficient way, 
but we are not satisfied with just any basis. Notice that the standard basis has two special 
properties:

• Property 1 (unit length): Every basis vector has a length of 1:

‖𝐞𝐞𝑖𝑖‖ =  √𝐞𝐞𝑖𝑖 ⋅ 𝐞𝐞𝑖𝑖   = 1

• Property 2 (orthogonality): Every basis vector is orthogonal to every other basis 
vector, meaning that, if i ≠ j, then the following is true:

𝐞𝐞𝑖𝑖 ⋅ 𝐞𝐞𝑗𝑗 = 0 

Any basis with these two properties is called an orthonormal basis of the space. The 
idea of PCA is to change the basis we use to represent the covariance matrix from the 
standard basis to a special orthonormal basis made up of its eigenvectors. This basis is 
special because we can use the eigenvalues to rank the importance of the eigenvectors 
in representing the data, which allows us to reduce the size of the basis by deleting the 
vectors from it that have the least impact on the data.

In this section, we learned about mathematical basics such as eigenvalues, eigenvectors, 
and orthogonal bases, which we will use in the next section to understand dimensionality 
reduction with PCA. 

The principal component analysis approach to 
dimensionality reduction 
In this section, we will learn about the general idea of PCA and go through the steps for 
performing PCA on our dataset. 

PCA is a method for reducing the dimensions of data by using some ideas from linear 
algebra to map the rows from a feature variable matrix X from its default d-dimensional 
space to an r-dimensional space for some r < d by making use of principal components 
and the subsequent use of these components in understanding the data better. 

From the previous section, we know that there are two types of dimensionality reduction 
methods: feature elimination and feature extraction. PCA falls into the latter category.  
It combines our input feature variables in a way that allows us to drop the least important 
variables (out of the new feature variables generated after performing PCA) while still 
retaining the valuable parts of all the input variables. In addition, the new feature variables 
after performing PCA are independent of one another. 



The principal component analysis approach to dimensionality reduction      287

How do you decide on whether to apply PCA to your setup of input feature variables? This 
is an important question to answer before getting started with PCA:

• It is a good idea to consider PCA if you are working with a lot of variables and want 
to reduce them but are not sure about which variables are the least important ones. 

• After applying PCA, the variables become less interpretable since PCA generates 
new feature variables that are a combination of the old variables.  

• PCA makes sure that the variables generated are linearly independent of each other, 
making it easier to apply linear models such as linear regression to a dataset. 

Let's try to understand PCA with some visuals before jumping into the details of it. The 
process of finding principal components starts with a covariance matrix, which is simply 
a correlation matrix that has not been normalized. Then we go on to find the eigenvalues 
and eigenvectors for this covariance matrix. This will give us an idea of the most 
important (principal) directions and how important these directions are – eigenvectors 
with higher eigenvalues are considered more important and they are ranked from most 
important to least important.

For our example dataset, let's say our scatterplot is shown in Figure 12.6. There are two 
main directions when it comes to the alignment of the datapoints – green and orange. 
As we can see, the variance in the data is more in the green direction as compared to the 
orange, making it more important:

Figure 12.6 – Initial input feature variables 
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It would be easier to work with this dataset if we could transform our data to align with 
these important directions as shown in Figure 12.7. The data is transformed in such a way 
that the green and orange directions now align with our x and y axes. An important thing 
to keep in mind is that the principal directions are orthogonal to each other:

 

Figure 12.7 – Initial input feature variables after being transformed by PCA

It is important to keep in mind that even though the example shown here has two 
dimensions, this same principle applies to higher dimensions as well. PCA becomes even 
more important when we have a higher dimensional dataset since it helps us to project 
our dataset into lower dimensions while preserving most of the details captured by the 
original variables. 

Let's now move on to looking at PCA with some more mathematical rigor. Assume that 
we have a dataset with d-dimensions (or columns) and n rows, where each of the columns 
corresponds to an independent variable:

• Step 1: It is important to standardize the dataset before moving ahead with PCA 
when different feature variables have different ranges. This makes sure that the 
mean for the variable is 0 and the variance is 1. The mathematical equation for 
normalizing a variable is shown here: 

d1(normalized) = 
(𝑑𝑑1 −  �̅�𝑑1)

𝑆𝑆  
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Here d1 is the original data value,�̅�𝑑1  is the mean of the concerned feature variable, 
and S is the standard deviation.

We must apply this normalization for the entire dataset (all feature variables).  
Let's name this matrix C. 

• Step 2: In this step, we take the transpose of matrix C and calculate the value for 
CTC. This resulting matrix is called the covariance matrix. The covariance matrix 
shows how all the variables in a dataset are related to each other. The covariance 
matrix is similar to a correlation matrix, but not scaled to have entries between -1 
and 1. 

• Step 3: We then calculate the eigenvalues and vectors of this covariance matrix as 
shown in the previous section. Let's call the matrix containing the eigenvalues along 
the diagonal and zero everywhere else Λ and the matrix containing the eigenvectors 
V. These eigenvectors in V define the directions of the new axis, as shown in Figure 
12.7. The corresponding eigenvalues determine the importance of each eigenvector 
and the information about the distribution of data that it carries:

𝚲𝚲 = [
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑑𝑑

]               𝐕𝐕 = [𝐯𝐯1 𝐯𝐯2 ⋯ 𝐯𝐯𝑑𝑑] 

λ1, λ2, ..., λd are the eigenvalues. v1, v2, ..., vd are the eigenvectors in the V matrix. 
• Step 4: The eigenvalues are sorted in descending order and so are the eigenvectors. 

The sorted matrices are λ* and V*, respectively. 

• Step 5: Next, we do matrix calculation to find C* = Cv, where the observations of 
this new matrix are a combination of the original variables and the columns of C* 
are linearly independent of one another. These new variables are not in an easily 
interpretable form, though.

• Step 6: This is the most crucial step, where we need to determine the number of 
components of C* that we want to keep. This decision is based on the goal we are 
trying to achieve; if we want to plot a high-dimensional dataset in two dimensions, 
then we should keep the two most important principal components, and so on. 

A more common way to make the decision is to calculate the proportion of variance 
explained by the selected principal components. Let's say you want your principal 
components to be able to explain 90% of the variation in the dataset. Then, you will 
have to include as many principal components as is required for the cumulative 
proportion of variance to reach your desired threshold of 90%. 
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The proportion of variance is obtained by dividing the sum of the eigenvalues of the 
selected features by the total sum of all eigenvalues of all features. Let's say that  
we selected the first two components out of d principal components; the proportion 
of variance would be as follows: 

𝜆𝜆1 + 𝜆𝜆2
𝜆𝜆1 +  𝜆𝜆2 + ⋯ + 𝜆𝜆𝑑𝑑

 

To sum up, PCA helps us to reduce high-dimensional data to lower dimensions, and 
this can help with visualization, speeding up model training when it comes to machine 
learning, and more. We went through the various steps that are required to apply PCA 
to a dataset by making use of the eigenvalue, eigenvector, and orthogonal basis concepts 
that were covered in the first section. Lastly, we discussed the idea of the proportion of 
variance. 

In the next section, we will learn about how to apply PCA to a dataset using the  
scikit-learn library. 

The scikit-learn implementation of PCA 
In this section, we will apply PCA to the pizza.csv dataset (which we explored in the 
first section of this chapter) using the scikit-learn library's PCA class. 

As discussed in the previous section, there are two ways of choosing how many principal 
components to use, and the choice depends on the goal that you are trying to achieve – 
whether to reduce the dimensionality to plot something in 2-dimensional/3-dimensional 
space or keep enough principal components to achieve a certain proportion of variance. 

First, we will implement the method where we can select the number of principal 
components we want to keep. We will reduce the 7-dimensional pizza dataset to two 
principal components so that we can visualize how the different pizzas produced by 10 
different companies are different from each other when it comes to their nutritional 
content in a 2D plot instead of worrying about comparing and visualizing data in higher 
dimensions. 

We will start by importing the dataset and then dropping the brand column from it. This 
is done to make sure that all our feature variables are numbers and hence can be scaled/
normalized. We will then create another variable called target, which will contain the 
names of the brands of pizzas:

import pandas as pd
dataset = pd.read_csv('pizza.csv')
#Dropping the brand name column before standardizing the data
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df_num = dataset.drop(["brand"], axis=1)

# Setting the brand name column as the target variable
target = dataset['brand']

Now that we have the dataset in order, we will normalize the columns of the dataset 
to make sure that the mean for a variable is 0 and the variance is 1. We will use 
StandardScaler, available in the scikit-learn library:

#Scaling the data (Step 1)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(df_num)
scaled_data = scaler.transform(df_num)

After the data is scaled, we are ready to apply scikit-learn's PCA class to our dataset to 
obtain our principal components. We will restrict the number of principal components to 
two, which will enable us to later plot our principal components in a 2-dimensional plot:

#Applying PCA to the scaled data
from sklearn.decomposition import PCA

#Reducing the dimensions to 2 components so that we can have a 
  # 2D visualization
pca = PCA(n_components = 2)
pca.fit(scaled_data)
#Applying to our scaled dataset
scaled_data_pca = pca.transform(scaled_data)
#Check the shape of the original dataset and the new dataset
print("The dimensions of the original dataset is: ", scaled_
  data.shape)
print("The dimensions of the dataset after performing PCA is: 
  ", scaled_data_pca.shape)

Here is the output: 

The dimensions of the original dataset are:  (300, 7)
The dimensions of the dataset after performing PCA is:  (300, 
  2)
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Now we have reduced our 7-dimensional dataset to its two principal components, 
which can be seen in the preceding dimensions. We will move forward with plotting 
the principal components to check whether two principal components were enough to 
capture the variability in the dataset – the different nutritional content of pizzas produced 
by different companies. We will be using the matplotlib library for the plotting:

#Plotting the principal components
import matplotlib.pyplot as plt
import seaborn as sns

sns.scatterplot(scaled_data_pca[:,0], scaled_data_pca[:,1], 
  target)
plt.legend(loc="best")
plt.gca().set_aspect("equal")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.show()

Here is the output: 

Figure 12.8 – Principal components of the pizza dataset
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We plotted the first principal component against the second principal component and 
used the target column, which carried the names of the different pizza brands, to color 
the datapoints. We can clearly see the distinction between the pizzas produced by different 
pizza companies, with minor overlaps. 

As mentioned previously, one of the demerits of PCA is that the plot is hard to interpret 
since the principal components are a combination of the original dataset. 

Now, we will move on to perform PCA in a way where we do not choose the number of 
desired principal components; rather, we choose the number of principal components that 
add up to a certain desired variance. The Python implementation of this is very similar to 
the previous way with very slight changes to the code, as shown here:

import pandas as pd

dataset = pd.read_csv('pizza.csv')

#Dropping the brand name column before standardizing the data
df_num = dataset.drop(["brand"], axis=1)
# Setting the brand name column as the target  variable
target = dataset['brand']

#Scaling the data (Step 1)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(df_num)
scaled_data = scaler.transform(df_num)

#Applying PCA to the scaled data
from sklearn.decomposition import PCA

#Setting the variance to 0.95
pca = PCA(n_components = 0.95)
pca.fit(scaled_data)
#Applying to our scaled dataset
scaled_data_pca = pca.transform(scaled_data)
#Check the shape of the original dataset and the new dataset
print("The dimensions of the original dataset are: ", scaled_
  data.shape)
print("The dimensions of the dataset after performing PCA is: 
  ", scaled_data_pca.shape)
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Here is the output: 
The dimensions of the original dataset are:  (300, 7)
The dimensions of the dataset after performing PCA is:  (300, 
  3)

As we can see from the output, three principal components are required to capture 95% 
of the variance in the dataset. This means that by choosing two principal directions 
previously, we were capturing < 95% of the variance in the dataset. Despite capturing < 
95% of the variance, we were able to visualize the fact that the pizzas produced by different 
companies have different nutritional contents. 

In this section, we looked at the implementation of PCA using scikit-learn, which 
performs all the steps mentioned in the previous section under the hood and provides 
us with a quick result. We imported the dataset, dropped the non-numeric columns, and 
scaled each column of the dataset to make sure that the mean was 0 and the variance 
was 1. We then applied the PCA algorithm and selected the first two principal directions 
to visualize the dataset. We also performed a similar process but this time set the PCA 
algorithm to capture 95% of the variance in the dataset, for which it needed to capture 
three principal components. 

In the next section, we will apply PCA to the popular MNIST dataset and analyze the 
number of principal components required to capture a required amount of variance in the 
dataset. 

An application to real-world data  
In this section, we will apply PCA to the MNIST dataset. The MNIST dataset is one of the 
most famous datasets in machine learning and contains handwritten digits that are used 
to train image processing algorithms. We will be using version 1 of the dataset, where 
each picture of every digit has 784 features. We will transform these features into a 28 x 
28 matrix for visualization purposes. Each element of this matrix is a number between 0 
(white) and 255 (black). 

The first step is to import the data as shown in the following code. It is going to take some 
time since it is a big dataset, so hang tight. The dataset contains images of 70,000 digits 
(0-9), and each image has 784 features:
#Importing the dataset
from sklearn.datasets import fetch_openml
mnist_data = fetch_openml('mnist_784', version = 1)

# Choosing the independent (X) and dependent variables (y)
X,y = mnist_data["data"], mnist_data["target"]
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Now that we have the dataset imported, we will move on to visualize an image of a digit 
to get familiar with the dataset. For visualization, we will use the matplotlib library. 
We will visualize the 50,000th digit image. Feel free to check out other digit images of 
your choice – make sure to use an index between 0 and 69,999. We will set colormap to 
binary to output a grayscale image, which is implemented in the following code:

#Plotting one of the digits
import matplotlib.pyplot as plt
plt.figure(1)
#Plotting the 50000th digit
digit = X[50000]
#Reshaping the 784 features into a 28x28 matrix
digit_image = digit.reshape(28,28)

plt.imshow(digit_image, cmap='binary')
plt.show()

Here is the output: 

Figure 12.9 – Visualizing a digit image from the MNIST dataset
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As you can see in the preceding figure, the image is 28 x 28 in size. 

Next, we will move on to scaling the dataset by making using of StandardScaler to 
standardize the features by setting the mean to 0 and variance to 1:

#Scaling the data
from sklearn.preprocessing import StandardScaler
scaled_mnist_data = StandardScaler().fit_transform(X)
print(scaled_mnist_data.shape)

Here is the output: 

(70000, 784)

scaled_mnist_data is a 70,000 x 784 matrix. 

Now that we have our data in the form we want it to be in, we will go ahead and apply 
PCA to it. We will set the number of principal components to 784: 
#Applying PCA to ur dataset
from sklearn.decomposition import PCA

pca = PCA(n_components=784)
mnist_data_pca = pca.fit_transform(scaled_mnist_data)

Now that we have the principal components figured, we will find the cumulative 
variance captured by these principal components. In other words, we will know how 
many principal components we need to consider to capture 90% of the variance in the 
original dataset. We will use the NumPy library to calculate the variance captured by each 
component and the cumulative variance. The equation for calculating the percentage 
variance captured by each component is as follows: 

Percentage variance explained by each PC =  Variance explained by each PC
Sum of variance explained by all PCs 

Cumulative variance can be calculated by adding the variance explained by each 
component as we move from one component to another. We will calculate the cumulative 
variance using the numpy library, as shown here: 
#Calculating cumulative variance captured by PCs
import numpy as np
variance_percentage = pca.explained_variance_/np.sum(pca.
  explained_variance_)

#Calculating cumulative variance
cumulative_variance = np.cumsum(variance_percentage)
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We will now visualize the cumulative variance to see how many principal components are 
needed to explain 90% of the variance in the original dataset:

#Plotting cumalative variance
import matplotlib.pyplot as plt
plt.figure(2)
plt.plot(cumulative_variance)
plt.xlabel('Number of principal components')
plt.ylabel('Cumulative variance explained by PCs')
plt.grid()
plt.show()

Here is the output: 

Figure 12.10 – Cumulative variance explained by principal components
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From the preceding plot, we can see that a little less than 300 principal components 
(dimensions) are required to explain 90% of the variance in the original datasets. 

After reducing the dimensions of the dataset, you can then move ahead with other 
machine learning algorithms (such as regression, clustering, and others) and apply them 
to your dataset. You should see a considerable decrease in the model training time with 
principal components. 

In this section, we learned about applying PCA to the MNIST dataset and saw how  
we can use just 300 dimensions to capture a very high variance in the dataset. This is 
helpful when it comes to large datasets to reduce the disk space that is required for 
storage, reduce the computation time, and have a lower chance of model fitting. 

Summary 
In this chapter, we learned about eigenvalues, eigenvectors, and orthogonal bases and  
how these concepts connect to form a basis for dimensionality reduction. We then learned 
about the two types of dimensionality reduction methods – feature elimination and 
feature extraction. We discussed the different steps of performing Principal Component 
Analysis which falls into the feature extraction category for dimensionality reduction.  
We used the implementation of PCA from scikit-learn to apply the algorithm to our 
dataset, where we reduced the features in our pizza dataset from 7 to 2 and visualized 
the data. We were able to easily tell that the nutrients present in the pizzas manufactured 
by different companies were different. Lastly, we applied PCA to the MNIST dataset 
and figured out that only 300 principal components were needed to capture 90% of the 
variance in the dataset, as compared to the 784 feature variables that we had originally, 
reducing the dimensionality by more than 50%!

Congratulations! We have reached the end of our discrete mathematics with applications 
in Python journey. If you have followed along with all the mathematical concepts and the 
Python code snippets, you are in a very good position to carry forward this knowledge 
and apply it to more complex real-world problems. A suggestion would be to start 
working on new projects involving different datasets and showcasing your work on 
different platforms such as GitHub and Kaggle. This will not only help you showcase your 
achievements but also aid your understanding of the concepts better. Keep practicing! In 
the words of Confucius, "I hear and I forget. I see and I remember. I do and I understand." 
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elementary properties of probability
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example  87, 88
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events  85
expectation

about  100
empirical random variable  101

F
factorials  69, 70
features  239
for loop  155-158
formal logic

by truth tables  20
cores ideas  24

terminology  20, 21
functions

about  13
in elementary algebra  14
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G
Gaussian elimination

about  127-131
linear systems, solving  128

Google PageRank I  102-105
Google's PageRank algorithm  260-267
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about  170
degrees, of vertices  190, 191
feature extraction  190
searching  198
storage  181
using  178-181

greedy algorithm  215
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hexadecimal numbers

about  59, 60
advantages  64
applications  59, 60
colors, defining on web  63, 64
error messages, displaying  62
locations, defining in computer 

memory  60, 61
MAC addresses  62

I
if-elif-else conditionals  154
implication  25
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example  134, 135
inconsistent system

about  118
in RREF  129

intractable problem  165
invalid  21

K
k-permutations

of set  70, 71

L
Laplacian probability

about  90
calculating  90
independent events  91
tossing many coins, example  91, 93
tossing multiple coins, example  91

Law of Total Probability  96
leading coefficient (pivot)  128
least-squares curves

using, with NumPy  249-251
using, with SciPy  249-251

least-squares lines
using, with NumPy  245-249

least-squares method  238, 243-245
least-squares surfaces

using, with NumPy  252-254
using, with SciPy  252-254

Linear complexity O(n)  146, 147
linear equations

example  112
in two variables  110

linear relationship  238

linear search algorithm, 
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average case  161
best case  161
working  161
worst case  161

linear system of two equations, 
in two variables

about  113
consistent system  113
dependent system  116, 117
inconsistent system  114

linear systems
matrix representations  119
solving, with Gaussian elimination  128
solving, with NumPy  133

linear systems of equations  110
line of best fit  240-243
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logistics  5

M
machine learning  5
mathematical functions 

versus Python functions  15, 16
mathematical induction

proofs  38
proofs, example  39-44

mathematical proofs
about  31
examples  31-33

matrices
about  119, 120
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in Python  193, 194
multiplying  125, 126
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subtraction  121

matrix multiplication  124, 125
mean  100
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example  74, 75
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about  194
example  194, 195
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MNIST dataset

principal component analysis 
(PCA), applying, to  294-298

model parameters  239
monotonicity theorem  88
multiplication rules  95

N
negation  24
Network Interface Card (NIC)  62
networks

about  170, 174
shortest paths on  205
storage  181
using  178-181

nodes  170
non-connected graph

example  183
non-deterministic polynomial 

time (NP)  165
Notation  145
NOT operator  55, 56
number of paths
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specified length  191, 192

NumPy
least-squares curves, using with  249-251
least-squares lines, using with  245-249
least-squares surfaces, using with  252
linear systems, solving  133

O
ordered pairs  175
OR operator  54, 55
orthogonal bases  280-286
outcomes  84, 85

P
packages installing, in Python

reference link  57
PageRank  103
PageRank algorithm

applying, to Real Data  273-277
implementing, in Python  268-273

paths  172
permutation

about  68
of set  69
of simple set  68
playlists example  69

polynomial regression  249
polynomial time (P)  164
premises  21
principal component analysis (PCA)

about  279
applying, to MNIST dataset  294-298
approach, to dimensionality 

reduction  286-290
scikit-learn implementation  290-294

Principle of Inclusion-Exclusion  89
probability measure  86
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Python
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matrices powers  193, 194
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implementing in  268-273
used, for converting decimal 

numbers to binary  50
used, for converting decimal 

numbers to hexadecimal  50
weight matrix, storing in  188, 189

Python functions
about  160
versus mathematical functions  15, 16

Python implementation
of depth-first search (DFS)  201-204

Python Implementation, of 
Dijkstra's algorithm

about  221-225
example  225-230

Python programming language
logical conditions  153

Q
Quadratic complexity O(n2)  147, 148

R
random experiment

about  84
tossing coins example  85
tossing multiple coins example  85, 86

random variables (RV)
about  98, 99

data transfer errors example  99
empirical random variable  100
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Real Data

PageRank algorithm, 
applying to  273-277

red, green, and blue (RGB)  68
reduced row echelon form (RREF)

about  128
consistent system  129
dependent system  130
inconsistent system  129

regression  238-240
relational databases  6
relations

about  13
versus functions  13

repetitive flow  155
residuals  244

S
sample spaces  85
scikit-learn implementation

of principal component analysis 
(PCA)  290-294

SciPy
least-squares curves, using with  249-251
least-squares surfaces, using 

with  252-254
SciPy library

reference link  73
search algorithm, complexity

about  159
binary search algorithm  161-164
linear search algorithm  160, 161

Search Engines
developing, over time  258, 259
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disjoint set  10
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empty set  7
even and odd numbers, example  10
examples  7

set-builder notation
about  7
using  8

set theory  6
Shortest-Distance Paths  206, 207
shortest path

on networks  205
problems  205
problems, variations  205
searching, with Brute Force  212-214
searching, with Dijkstra's 

algorithm  214, 215
shortest path problem

checking, whether solutions 
exist  208-211

statement  207, 208
standard deviation  101
subset  7
sum of squared errors (SSE)  243-245
superset  7
symmetric matrix  183
systems of linear equations

about  118
solutions  118

T
teambuilding

example  72, 73
temperatures and precipitation 

example  94, 95
terminology, for formal logic

examples  22-26
timeit library

reference link  144
tractable problem  164
transitivity law  28
traveling salesman problem

example  79, 81
tree data structures

searching  198
trees
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using  178-181

trendline  240
truth tables

about  26
formal logic by  20
proofs by  20

truth tables, example
contrapositive  30, 31
De Morgan's laws  29, 30
transitivity law, of conditional logic 28

truth tables, examples
converse  27

types, repetitive flow
for loop  155-158
while loop  159
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variable  238
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about  101
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practical calculation  102

vectors  119
dot product  124
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W
weight matrix

storing, in Python  188, 189
weight matrix, of directed network

about  188
examples  188
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while loop  158, 159


	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Part I – Basic Concepts of Discrete Math
	Chapter 1: Key Concepts, Notation, Set Theory, Relations, and Functions
	What is discrete mathematics?
	Elementary set theory
	Definition–Sets and set notation
	Definition: Elements of sets 
	Definition: The empty set 
	Example: Some examples of sets 
	Definition: Subsets and supersets
	Definition: Set-builder notation
	Example: Using set-builder notation
	Definition: Basic set operations
	Definition: Disjoint sets
	Example: Even and odd numbers
	Theorem: De Morgan's laws
	Example: De Morgan's Law
	Definition: Cardinality
	Example: Cardinality

	Functions and relations
	Definition: Relations, domains, and ranges
	Definition: Functions
	Examples: Relations versus functions
	Example: Functions in elementary algebra
	Example: Python functions versus mathematical functions 

	Summary

	Chapter 2: Formal Logic 
and Constructing Mathematical Proofs
	Formal Logic and Proofs by Truth Tables
	Basic Terminology for Formal Logic
	Example – an invalid argument
	Example – all penguins live in South Africa!
	Cores Ideas in Formal Logic
	Truth Tables
	Example – The Converse
	Example – Transitivity Law of Conditional Logic
	Example – De Morgan's Laws
	Example –  The Contrapositive

	Direct Mathematical Proofs
	Example – Products of Even and Odd Integers
	Example – roots of even numbers
	Shortcut – The Contrapositive

	Proof by Contradiction
	Example – is there a smallest positive rational number?
	Example – Prove ￼ is an Irrational Number
	Example – How Many Prime Numbers Are There?

	Proof by mathematical induction
	Example – Adding 1 + 2 + … + n
	Example – Space-Filling Shapes
	Example – exponential versus factorial growth

	Summary

	Chapter 3: Computing with Base-n Numbers
	Understanding base-n numbers 
	Example – Decimal numbers
	Definition – Base-n numbers

	Converting between bases
	Converting base-n numbers to decimal numbers
	Example – Decimal value of a base-6 number
	Base-n to decimal conversion 
	Example – Decimal to base-2 (binary) conversion 
	Example – Decimal to binary and hexadecimal conversions in Python

	Binary numbers and their applications 
	Boolean algebra 
	Example – Netflix users

	Hexadecimal numbers and their application
	Example – Defining locations in computer memory
	Example – Displaying error messages
	Example – Media Access Control (MAC) addresses
	Example – Defining colors on the web

	Summary 

	Chapter 4: Combinatorics 
Using SciPy
	The fundamental counting rule
	Definition – the Cartesian product
	Theorem – the cardinality of Cartesian products of finite sets
	Definition – the Cartesian product (for n sets)
	Theorem – the fundamental counting rule
	Example – bytes
	Example – colors on computers

	Counting permutations and combinations 
of objects
	Definition – permutation
	Example – permutations of a simple set
	Theorem – permutations of a set
	Example – playlists
	Growth of factorials
	Theorem – k-permutations of a set
	Definition – combination
	Example – combinations versus permutation for 
a simple set
	Theorem – combinations of a set
	Binomial coefficients
	Example – teambuilding
	Example – combinations of balls

	Applications to memory allocation
	Example – pre-allocating memory

	Efficacy of brute-force algorithms
	Example – Caesar cipher
	Example – the traveling salesman problem

	Summary

	Chapter 5: Elements of Discrete Probability
	The basics of discrete probability
	Definition – random experiment
	Definitions – outcomes, events, and sample spaces
	Example – tossing coins
	Example – tossing multiple coins
	Definition – probability measure
	Theorem – elementary properties of probability
	Example – sports
	Theorem – Monotonicity
	Theorem – Principle of Inclusion-Exclusion
	Definition – Laplacian probability
	Theorem – calculating Laplacian probabilities
	Example – tossing multiple coins
	Definition – independent events
	Example – tossing many coins

	Conditional probability and Bayes' theorem
	Definition – conditional probability
	Example – temperatures and precipitation
	Theorem – multiplication rules
	Theorem – the Law of Total Probability
	Theorem – Bayes' theorem

	Bayesian spam filtering
	Random variables, means, and variance
	Definition – random variable
	Example – data transfer errors
	Example – empirical random variable
	Definition – expectation
	Example – empirical random variable
	Definition – variance and standard deviation
	Theorem – practical calculation of variance
	Example – empirical random variable

	Google PageRank I
	Summary

	Part II – Implementing Discrete Mathematics in Data and Computer Science
	Chapter 6: Computational Algorithms in 
Linear Algebra
	Understanding linear systems of equations
	Definition – Linear equations in two variables
	Definition – The Cartesian coordinate plane
	Example – A linear equation
	Definition – System of two linear equations in two variables
	Definition – Systems of linear equations and their solutions
	Definition – Consistent, inconsistent, and dependent systems

	Matrices and matrix representations of linear systems
	Definition – Matrices and vectors
	Definition – Matrix addition and subtraction
	Definition – Scalar multiplication
	Definition – Transpose of a matrix
	Definition – Dot product of vectors
	Definition – Matrix multiplication
	Example – Multiplying matrices by hand 
and with NumPy

	Solving small linear systems with Gaussian elimination
	Definition – Leading coefficient (pivot)
	Definition – Reduced row echelon form
	Algorithm – Gaussian elimination
	Example – 3-by-3 linear system

	Solving large linear systems with NumPy
	Example – A 3-by-3 linear system (with NumPy)
	Example – Inconsistent and dependent systems with NumPy
	Example – A 10-by-10 linear system (with NumPy)

	Summary 

	Chapter 7: Computational Requirements for Algorithms
	Computational complexity of algorithms 
	Understanding Big-O Notation
	Complexity of algorithms with fundamental control structures 
	Sequential flow
	Selection flow
	Repetitive flow

	Complexity of common search algorithms 
	Linear search algorithm 
	Binary search algorithm 

	Common classes of computational complexity 
	Summary 
	References  

	Chapter 8: Storage and Feature Extraction of Graphs, Trees, and Networks
	Understanding graphs, trees, and networks
	Definition: graph
	Definition: degree of a vertex
	Definition: paths
	Definition: cycles
	Definition: trees or acyclic graphs
	Definition: networks
	Definition: directed graphs
	Definition: directed networks
	Definition: adjacent vertices
	Definition: connected graphs and connected components

	Using graphs, trees, and networks
	Storage of graphs and networks
	Definition: adjacency list
	Definition: adjacency matrix
	Definition: adjacency matrix for a directed graph
	Efficient storage of adjacency data
	Definition: weight matrix of a network
	Definition: weight matrix of a directed network

	Feature extraction of graphs
	Degrees of vertices in a graph
	The number of paths between vertices of a specified length
	Theorem: powers of adjacency matrices	
	Matrix powers in Python
	Theorem: minimum-edge paths between vi and vj

	Summary

	Chapter 9: Searching 
Data Structures 
and Finding 
Shortest Paths
	Searching Graph and Tree data structures
	Depth-first search (DFS)
	A Python implementation of DFS

	The shortest path problem and variations of the problem
	Shortest paths on networks
	Beyond Shortest-Distance Paths
	Shortest Path Problem Statement
	Checking whether Solutions Exist

	Finding Shortest Paths with Brute Force
	Dijkstra's Algorithm for Finding Shortest Paths
	Dijkstra's algorithm
	Applying Dijkstra's Algorithm to a Small Problem

	Python Implementation of Dijkstra's Algorithm
	Example – shortest paths
	Example – A network that is not connected

	Summary

	Part III – Real-World Applications of Discrete Mathematics
	Chapter 10: Regression Analysis with NumPy and Scikit-Learn
	Dataset
	Best-fit lines and the least-squares method  
	Variable 
	Linear relationship 
	Regression
	The line of best fit  
	The least-squares method and the sum of squared errors

	Least-squares lines with NumPy
	Least-squares curves with NumPy and SciPy
	Least-squares surfaces with NumPy and SciPy
	Summary 

	Chapter 11: Web Searches with PageRank
	The Development of Search Engines over time
	Google PageRank II
	Implementing the PageRank algorithm 
in Python
	Applying the Algorithm to Real Data
	Summary

	Chapter 12: Principal Component Analysis with Scikit-Learn
	Understanding eigenvalues, eigenvectors, 
and orthogonal bases 
	The principal component analysis approach to dimensionality reduction 
	The scikit-learn implementation of PCA 
	An application to real-world data  
	Summary 

	Other Books You May Enjoy
	Index



